WHAT GIFT for the spoilt electronics fans, gadgets, gizmos and wannahaves!

- Electronic Warfare dangerous fields!
- Build it!
- Reverse Engineering toy R/C car as router control
- From A to D... via USB!
- Telephone Supervisor
- Christmas Light String
Yes, that's right, down town, down under in Sydney Australia. We are a bunch of electronics enthusiasts who sell a great range of goodies through our FREE 400 page catalogue. Don't be frightened! You can purchase on the Net from us 24/7/365 through our secure encrypted system. Post and packing charges are modest and you can have any of 8000+ unique products delivered to your door within 7 - 10 days of your order. Some specific products are shown below.

Lead-Acid Battery Zapper Kit
KC-5414 £11.75 + post & packing
- Lead acid batteries are very common in modern life, and are a very versatile power source. Unfortunately, the chemical reaction inside the cells can be the very thing leading it to a premature death. This simple circuit is designed to produce bursts of high energy pulses to help reverse the damaging effects of sulphation in wet lead acid cells. This is particularly useful when a battery has been sitting for a period of time without use. The effects are dependant of the battery's condition and type, but the results can be quite good indeed.

High Performance Electronic Projects for Cars
Be your own engineer when it comes to your ride with some of the projects in this catalogue. For example, the Nitrous Oxide System is designed to add an additional amount of nitrous to your car's intake manifold, increasing performance and top speed.

Nitrous Fuel Mixture / Motor Speed Controller
K6376 £169.99 + post & packing
- This control can be used with nitrous oxide systems for race use only. Use of these systems on the street is illegal.

High Range Adjustable Temperature Switch with LCD Display
K6376 £22.75 + post & packing
- Ideal for monitoring exhaust & brake temperature - 1200°C RANGEx!
MikroElektronika
MICROCONTROLLER DEVELOPMENT TOOLS

from Breadboarding Systems

Make PICmicro® development easy with the EasyPIC3 - only £99!

The new EasyPIC3 Development Board combines a versatile development/experiment board with a built-in USB programmer. With its wealth of on-board I/O devices and support for virtually all 8, 14, 18, 28 and 40-pin PICmicro® microcontrollers in the 10F, 12F, 16F and 18F families, we’re certain you won’t find a more versatile high quality board at such a low price. The EasyPIC3 Development Board is supplied with USB programming/power cable, programming software and useful example programs.

Also available are similar boards for the 8051, AVR and dsPIC, each at the same great price of £99 including UK delivery and VAT—please telephone or see our website for further details.

EasyPIC3 Development Board features:

- High quality development/experiment board with built-in USB 2.0 high-speed programmer.
- Programming software compatible with Windows operating systems including 2000 and XP.
- Comes with a PIC16F877A microcontroller but compatible with virtually all 8, 14, 18, 28 and 40-pin PICmicro® devices in the 10F, 12F, 16F and 18F families.
- On-board I/O devices including switches, LEDs, seven-segment displays, potentiometers and RS-232 interface. Now also features USB and PS/2 keyboard interface connectors.
- Provision for easy fitting of optional DS18S20 temperature sensor, and LCD and GLCD displays.
- All I/O lines available for off-board expansion.
- Wide range of optional add-on boards available including ADC, DAC, EEPROM, Compact Flash, MMC/SD, Keypad, RTC, RS-485, CAN and IrDA. Additional add-ons available soon.
- Powered from your PC’s USB port or optional mains adapter.
- Supplied with example programs written in assembly language, BASIC, C and Pascal.
- Supplied with Microchip Technology’s MPLAB development software and demonstration versions of MikroElektronika’s mikroBASIC, mikroC and mikroPascal compilers.

Learn about microcontrollers with our EasyPIC3 Starter Pack - just £149!

We’ve taken the EasyPIC3 Development Board and added a 16x2 character LCD display, 128x64 graphical LCD, DS18S20 temperature sensor, RS-232 serial communications cable and our own easy-to-follow microcontroller tutorial to form a complete and self-contained Starter Pack—everything you need to learn about and experiment with microcontrollers! With this pack you will quickly become proficient in microcontroller programming and interfacing. Please see our website for full list of covered topics.

Make programming easy too with mikroBASIC, mikroC and mikroPascal

Three incredibly easy-to-use yet powerful compilers for PICmicro® microcontrollers, each featuring a user-friendly code editor, built-in tools and routines and source-level debugger. Supplied libraries facilitate rapid development and include ADC, CAN, Compact Flash, EEPROM, Ethernet, Graphic LCD, fC, LCD, 1-wire, PWM, RS-485, sound, SPI, USART, USB routines and many more. mikroBASIC and mikroPascal—£99 each, mikroC—£149.

Call 0845 226 9451 or order online at www.breadboarding.co.uk

All prices include UK delivery and VAT. Major credit and debit cards accepted. Secure online ordering.
From the Editor's desk

Early reports show that our November 2005 issue with its free Kaleidoscope e-CAD DVD achieved not only good sales figures but also a number of sell-out reports from several major newsagents including WHS shops. As our distributors do not re-stock sales points, the best way now to get your copy of the issue with the free DVD inside is to contact our Customer Services department, see page 6 for the contact information. Feedback on the free DVD is starting to come in too. We had a good laugh when someone reported that the Kaleidoscope DVD would not run on the CD-ROM player in his PC nor on the family’s DVD player connected to the TV set ("no music or menu on me screen"). We’ve launched an on-line Survey to help us find out which of the programs on the Kaleidoscope DVD our readers think is the best of the lot. The Survey is accessible via our homepage.

E-blocks have rocketed into popularity, proving that the concept of ‘connectivity for the future’ holds true. Designs using E-blocks are starting to come in and we sure hope to publish some in the near future. Meanwhile, this December issue has an article on Flawcode, the magic software behind E-blocks. This issue marks the end of two article series: Delphi for Electronic Engineers and Quiz’Away. As a cautious estimate, the Delphi course has attracted about 3,000 followers so we can confidently say it’s been a resounding success. Quiz’Away will be followed up by a different kind of puzzle to stimulate the grey matter — in hexadecimal fashion.

Finally, hot news from the Elektor lab! The resident pizza oven is temporarily out of order while Paul Goossens is converting the thing into an SMD bakery — look and smell in the January 2006 issue. Meanwhile our drinks fridge is back to normal — see page 8.

Happy reading and enjoy the Christmas holidays.
Jan Butting, Editor

18 Jumbos and Minis

Displays are probably the most important man-machine interface. Everywhere you look — televisions, monitors, and industrial applications — the old-faithful CRT display technology is losing ground and being superseded by more up-to-date technologies, which are also conquering new application areas. In this article we look at the current situation and examine possible future trends.

24 Electronic Warfare

People have been busy experimenting with electricity ever since it was ‘discovered’. Many good things have come out of these experiments, and the world would look completely different without all our electronic aids. But there’s also another, darker, side to the picture.
If you have a fit looking at your monthly phone bill you might want to know who’s on the phone all the time. Also, you may want to start exercising control over which extension in your home is disabled or enabled. Our Telephone Supervisor comes with smart Windows software that puts you (back) in control of things.

We thank all our readers, contributors and advertisers for their support during the past year and wish you all a happy and peaceful 2006.

This design shows a toy R/C car can be adapted to act as a WLAN Router ‘watchdog’ to switch the Router on or off depending whether any networked PCs are present.
Affordable CAN Bus Solutions

CANBUS is a very small dongle that plugs into any PC USB Port and gives an instant CAN connectivity. This means it can be treated by software as a standard COM Port (serial RS232 port) which eliminates the need for any extra drivers or by installing a direct driver DLL for faster communications and higher CAN bus loads. CAN232 is a very small dongle that plugs into any PC COM Port, or any other RS232 port in an embedded system and gives an instant CAN connectivity. This means it can be treated by software as a standard COM Port (serial RS232 port) which eliminates the need for any extra drivers. Sending and receiving can be done in standard ASCII format.

priced from £61.00 (CAN-232)

USB Instruments - PC Oscilloscopes & Logic Analyzers

Our range of PC Instruments may be budget priced but have a wealth of features normally only found in more expensive instrumentation. Our DS1M12 and PS40M10 oscilloscopes have sophisticated digital triggering including delayed timebase and come with our EasyScope oscilloscope / spectrum analyzer / voltage and frequency display application software and our EasyLogger data logging software. We also provide Windows DLLs and code examples for 3rd party software interfacing to our scopes. Our ANT8 and ANTI6 Logic Analyzers feature 8I6 capture channels of data at a blazing 500MS/s sample rate in a compact enclosure.

priced from £125.00 (DS1M12 & ANTI8)

1 to 16 port USB to Serial Adapters

With over 16 different models available, we probably stock the widest range of USB Serial Adapters available anywhere. We offer converter cables, multi port enclosure style models in metal and plastic, also rack mount units with integral PSU such as the USB16COM-RM. Serial interfaces supported include RS232, RS422 and RS485. We also supply opto-isolated RS422 and RS485 versions for reliable long distance communications. All our USB Serial products are based on the premium chips and drivers from FTDI Chip for superior compatibility, performance and technical support across Windows, Mac-OS, CE and Linux platforms.

priced from £20.00 (US232B/IC)

UPCI Serial Cards

Discover our great value for money range of multi-port UPCI serial cards. Supporting from two to eight ports, the range includes RS232, RS422, RS485 and opto-isolated versions. Our 4 port and 8 port models can connect through external cables or the innovative wall mounting COMBOX.

priced from £21.00 (UPCI - 200L)

EasySync Ltd

373 Scotland Street
Glasgow G5 8QB UK.
Tel: +44 (141) 418-0181 Fax: +44 (141) 418-0110
Web: http://www.easysync.co.uk
E-Mail: sales@easysync.co.uk

* Prices shown exclude carriage and VAT where applicable
Towards the Zero-Oil Noise Cancelling PC Cooler

Dear Jan — I have come to the conclusion Elektor Electronics should include a Public Health Warning on its front cover. I had a pink fit when I read in the October 2005 issue — a PC had been immersed in oil to eliminate noise and heat. There are far simpler solutions to the problem of PC heat and noise, and far more enjoyable than having to explain to one’s wife why oil is dripping onto the carpet!

Firstly, buy a small domestic fridge. Bore a 50-mm hole in the side, remove the shelves then carefully install the PC inside. Feed all the cables through the hole, then fill the remaining fridge space with cans of beer or lager. Software and hardware crashes take on a whole new dimension as one downs several cans of lager. Secondly, for those troubled with PC fan noise — could I suggest your buy a microphone and large speaker, and construct a noise cancelling circuit. Not only will it eliminate fan noise, but will deaden the noise of your raucous singing while you are attempting to repair the crashed PC!

David Jack (UK)

Excellent idea David but what to do about the heat and noise generated by the fridge, and the objections of the Missus against a fridge installed for the sake of a PC?

Good morning Jan — you must own a very old fridge? From my experience modern fridges are ultra quiet. Repositioning the microphone over the compressor would resolve that problem.

Rejektor

Under this heading we will occasionally publish circuits, ideas and suggestions that did not make it to full publication in this magazine for various reasons (like lack of space).

Euro forgery detector

The detector for forged Euro banknotes as proposed by Mr. Karl Prodinger is marked by an interesting measurement principle and a well thought out concept complete with some remarkable technical tweaks. Initially we wanted to post-engineer this project into a full-blown Elektor Electronics DIY project but arguably the mechanical construction so essential in this design is hard to make repeatable in an electronics magazine like ours. However, the approach to the problem is innovative enough to warrant publication in this month’s Rejektor section. Possibly readers in the UK and USA are able to modify the design for use with pound sterling or US dollar banknotes respectively.

The measurement principle is based on a lesser known characteristic of Euro and other banknotes: sections of the banknote surface are printed using infrared blocking ink, while other sections have ink on them that is transparent to IR light. The difference is not visible until the banknote is held under an IR light source, as evidenced by the photo showing a 10 and a 50 Euro note being tested. The banknotes are placed on a white background. Under IR light exposure, only the right-hand side of both banknotes is visible, the wider, left-hand part remains white. The author used a simple monochrome video camera without a built-in IR filter to view the results. A piece of black film carrier material in front of the camera objective was used as a filter against visible light and so boost the camera’s IR sensitivity. A couple of IR LEDs may be used for the light source, but off the shelf halogen lights are also quite suitable as they emit quite a lot of IR light.

The circuit shown here is based on an approach filed under no. AT6392U with the German Patents Office. On the DEPATISnet website you can view patents applied for free of charge (http://depatisnet.dpma.de). The circuit is built around a quad opamp type TL084 and is remarkable for having just one adjustment point. The measurement setup for the detection light reflection against the surface of a banknote consists of two LEDs and a photodiode. LEDs D1 (green) and D2 (IR) are driven by an oscillator built around ICl. It supplies a frequency between 1 and 3 kHz. By means of an array of series resistors, the intensity of the LEDs is controlled. Preset R6 is required to compensate product tolerances on the BPY62 photodiode as well as response deviations.
Formant synth goes online
Readers may like to know that some 25 years after publication, the world-famous Elektor Formant synthesizer still enjoys great popularity and is graced by a group of staunch supporters. Formant users may be found in a Yahoo discussion group at http://launch.groups.yahoo.com/group/ElektorFormant/

Battery backup for bike — help please
Dear Editor — I believed I had thought up a simple battery backup using capacitors to isolate the ‘dynamo’ from DC and an optoisolator driving a transistor (with series diode) to switch the backup. I was quite hopeful about my design but in practice puzzlingly it seems not to work — it won’t switch over to the dynamo!

I had hoped to send it as a circuit idea — perhaps you could use it for your puzzle page.

Alan Bradley (UK)

Thanks Alan, your hand drawn circuit is reproduced here for

between the LEDs, ensuring stable operation of the detector over longer periods. Opamp IC1b is configured to act as a transimpedance amplifier typically used with photodiodes (here, D3). Sensor D3 has to be fitted with a piece of black heat shrink tubing to prevent ambient light corrupting the measurement results. The circuit around the third opamp, IC1c, is fairly unusual. Both inputs receive the same signal, but only the inverting input has a capacitor to ground (C3). This capacitor allows the signal supplied by the 85P62 to be averaged (remember, the LEDs are controlled by a rectangular signal, hence produce light pulses). The function of this stage is the crux to the operation of the entire circuit. While the inverting input of the opamp determines the average value of the signal, to non-inverting input receives the brightness values resulting from the light reflections on the banknote. When the banknote paper has IR blocking print on it, D3 will receive a small amount of light from the two LEDs. If, on the other hand, the ink is transparent to IR light, D3 will receive a weak signal from the green LED (D1), but a strong signal from IR LED D2. The stronger signal is converted by IC1c into a nearly rectangular-shaped signal.

The fourth opamp in the circuit, IC1d, serves to compensate the difference in propagation time between the oscillator output and the output of IC1c. The output of IC1d supplies signals synchronously with IC1c output signal. Although the rest of the circuit looks fairly simple, we are in fact looking at a complete synchronous demodulator. The pulses at the outputs of IC1c and IC1d are compared using LEDs D5 and series resistor R17. If a clear signal appears at the output of IC1c as a result of IR-transparent ink, this signal will be in anti-phase with that at the output of IC1d. Diode D5 then lights to indicate the presence of the IR transparent ink. Via R20, this point’s also connected to a piezo buzzer providing an audible indication.

The power supply section built around TI ensures good stabilisation of the supply voltage. A power-ok indicator has been added in the form of yellow LED D6. If the battery voltage drops, so will the LED current, eventually to a level so low the LED will go out. The author’s prototype was built using SMD parts because the resultant shorter PCB tracks allow the sensitivity of the opamps to strong RF fields to be kept to a minimum. In the event of RF oscillations arising, the dashed components may be added (R8, 10k; C2 approx. 10pF). To adjust the circuit, the tester is held above a couple of sheets of white (copy) paper. Preset R6 is adjusted for LED D5 to just come on. This setting remains stable — due to the signal averaging (there is no fixed reference value for IC1c), any drift on part of D3 can have no effect. Provided it has been built correctly, the circuit will then respond reliably to IR-transparent and IR-blocking types of ink.

In practice we still need to look at the problem of finding the right areas on banknotes to be subjected to the fake/real test. In the relevant range the transition from IR-transparent and IR-blocking has to be recognisable as clearly and reliably as possible to ensure that really good forgeries are also detected. With the 10- and 50-Euro banknotes in the photograph, the relevant transition area is near the figures in the upper right hand and bottom right hand corners. In this test are, the banknote has to show a clearly visible decolouration effect. With a larger white component (lighter print) it is however possible that the brightness difference detected by the IR test is too small.

The rear (verso) side of Euro banknotes (showing the bridge motif) is entirely transparent in the IR range, only the serial numbers will show up black.

Information on commercially available banknote testers may be found at, among others, www.wekoverif.com.

My main concern is the noise generated from the fridge door being constantly opened and closed to check the beer is cold enough. The image on the left shows the proposed ‘Zero-Oil Noise Cancelling PC Cooler’.

Excellent comment again David and the right-hand photograph shows our editorial fridge on a typical Friday afternoon around 2 pm.
other readers to examine and hopefully help you discover where the fault is! Please send feedback to the Editor so this subject may be continued in a truly constructive way!

This month's issue has the last installment of Professor Ohsmann's 'Quiz Away' series of electronics brain teasers. As of January next year we will be printing a contemporary puzzle for the electronics-minded to pit their wits against.

Windows FIFO buffer
Dear Editor — I refer to the inset on page 35 of the October 2005 issue ('Colossus Jr.', Ed.) where you show that disabling the FIFO buffer in Windows XP can help to solve problems with RS232 serial communication.

While experimenting with a DCF77 time signal receiver module, I discovered that switching the FIFO buffer does not take effect until the PC is restarted. This may be confusing as the operating system does not produce a matching message. Without a restart of the system it would seem that changing the FIFO settings has no effect.

Peter Simoons (Netherlands)

Thanks for that Peter, the word is being passed on.

SMD soldering aid
Dear Elektor staff — I applaud the attention you give in your articles to the problems of SMD soldering.

Being an electronics designer myself, I recently had my own share of problems with these tiny bits and decided to build a special tool to help me get them properly soldered onto a board. To my surprise, inexpensive tools that help you get an SMD properly soldered are few and far between.

My design for an SMD locker may be found on www.midibutton.nl.

G. Bouland (Netherlands)

That looks like a very useful little tool indeed, and we print a photograph of the device here. It may be ordered through Mr. Bouland's website. This month's Design Tips pages also show an SMD soldering aid.

Corrections & Updates
ESR/C Meter

The parts list states a wrong enclosure; this should a Hammond type 1593YBK.

FAQs on this popular project may be found on our website Forum.

1-MHz Frequency Counter
July/August 2005, p. 100, 030045-1.

The original software contained a few errors and a new version may be obtained from our website [ref. 030045-11.zip]. The software has been written for a 4.194304-MHz quartz crystal. To enable the microcontroller to be used with an 3.388608-MHz crystal, the program has to be modified as explained in the source code file, and then compiled again.

Precision Barometer/Altimeter
September 2005, p. 54, 040313-1.

New software that solves the problems with the real-time clock is now available from our website [ref. 040313-11.zip]. A 56 pF capacitor between pin 12 if IC2 and ground will improve the accuracy of the internal clock.

Marketplace
We're pleased to say that the Forum and E-News pages of our website attract a lot of visitors every day. Not so, as it turned out, with the Marketplace section we set up earlier this year, and that is why we...
ESR/C Meter — capacitor equivalent diagram

Dear Editor — as a long-time subscriber to your magazine I enjoyed reading the ‘ESR/C Meter’ article in the September 2005 issue. I was a little surprised however to see a capacitor electrically represented as a capacity with resistor in series with it. I would have expected a capacitance with a shunt (parallel) resistor (actually, the leakage resistor). How else to explain:

1. A charged capacitor in storage will gradually lose its charge. This can only be due to a parallel resistor across the capacitance.
2. If you connect a capacitor with a series resistor to a voltage source Ub and select ever higher values for the resistor, you will notice that the voltage on the capacitor will eventually become lower than Ub. This is explained by the voltage drop across the series resistor due to the virtual resistance in parallel with the capacitance.

Will you share your views on this with me?

A. Wilcox (UK)

The Elektor ESR/C Meter has been a resounding success and also gave rise to some hot debates in Internet newsgroups on electronics. The capacitor equivalent diagram shown in the article was purposely kept as simple as possible, showing only the main virtual components — in this case, the capacitance and the series resistor, both of which are accurately measured by the instrument. The complete equivalent circuit would also comprise a series inductance (formed mainly by the wire terminals and rolled up electrodes), a shunt (leakage) resistor as you correctly describe (being responsible for all listed effects) and an RC network again in parallel with the capacitance and responsible for the so-called dialectical absorption of the capacitor. The phenomena you list can indeed be explained on the basis of the comprehensive equivalent diagram.

Identifying SMD components

Dear Editor — thanks for a great program called Resistor Colour Band Identifier in 040203-11.zip. However, I was wondering if there was a similar program, pdf sheets collection or website for identifying SMD components. I currently use the Farnell/RS catalogues which can be time consuming. I think it would be useful to have an article on SMD repair and component identifying. Again, thanks for a great magazine.

Keith Harris (Australia)

SMD identification can be very tricky and time consuming. However, have a look at Mr R.P. Blackwell’s excellent overview at www.marsport.demon.co.uk/smd/mainframe.htm

ClariTy on electrostatic speakers?

Dear Jon — can you tell me if the ClariTy amplifier (June, September, October 2004, Ed.) is suitable for use with electrostatic loudspeakers? I have built my own ES loudspeakers with depth-adjustable membranes.

We do not recommend connecting ES drive units to the ClariTy amplifier because the transformer with the capacitive load of the electrostatic loudspeaker forms a complex impedance that’s sure to affect the output filter response to some degree. To this we should add that the final impedance of a typical ES speaker is likely to drop below 3 W at higher frequencies, which is too much of a load for this amp.

MailBox Terms

- Publication of reader’s correspondence is at the discretion of the Editor.
- Viewpoints expressed by correspondents are not necessarily those of the Editor or Publisher.
- Correspondence may be translated or edited for length, clarity and style.
- When replying to Mailbox correspondence, please quote issue number.
- Please send your Mailbox correspondence to:
 edition@elektor-electronics.co.uk or
 Elektor Electronics, The Editor, P.O. Box 190, Tunbridge Wells TN1 7YW, England.
PC Interfaces under Windows

PC Interfaces can be used for more than just the printer, mouse, modem and joystick! While it was relatively easy to directly access PC interfaces using a DOS computer, under Windows things are not all that simple. This book (CD-ROM incl.) shows you how it can be done.

£ 25.95
US$ 52.00

304 Circuits

304 Circuits is aimed at the active electronics enthusiast, professional or amateur. In this book you will find ideas, concepts and circuits covering the gamut of electronics. The book is arranged in subject sections to make it easier for you to find the circuit or idea you are looking for.

£ 13.45
US$ 27.00

ST62 Microcontrollers

ST62 MICROCONTROLLERS

Practical programming of the ST62 series of microcontrollers from SGS Thomson.

£ 24.95
US$ 50.00

Dictionary of Monitor Technology

The Dictionary of Monitor Technology is a pioneering book of unsurpassed range which clearly documents all aspects of the development of computer monitors. The subjects covered extend from the first 12-inch IBM monitor to today's high-tech units.

£ 25.95
US$ 52.00

Designing Audio Circuits

How does speech, music, or, indeed, any sound get from the record, CD, or cassette tape to the loudspeaker? This book endeavours to give a comprehensible answer.

£ 20.75
US$ 42.00

Build your own High-end Audio Equipment

For those who cannot, or will not, pay high prices for high end equipment, a solution is offered in this book: build your own at considerable cost savings.

£ 15.55
US$ 31.00

Build your own Audio Valve Amplifiers

This book contains, apart from construction projects for preamplifiers, power amplifiers, and two amplifiers for musical instruments, information on the operation of electron tubes, while the first chapter gives a short history of the valve.

£ 15.55
US$ 31.00

Bestseller
Lasers: Theory and Practice

A valuable book on the practical use of lasers. It consists of two main parts. The first deals with the fundamentals of lasers, including such topics as types of laser, modes of laser operation, wavelengths, chopping, scanning and applications. The second part contains a number of practical circuits and experiments.

Handbook for Sound Technicians

This book contains chapters on basic theory; microphones and musical instruments; various types of amplifier; loudspeakers; effects equipment; recording techniques; lighting equipment; the rehearsal room; and faultfinding and small repairs.

Faultfinding in Computers and Digital Circuits

This book covers faultfinding not just in microprocessor systems, microcontrollers and industrial PCs, but also in consumer items such as personal computers, multimedia devices, digital television and so on.

PC Service and Repair

This book provides the information you need to be able to deal with computer system faults whenever they occur. With the aid of this book, you can tackle faultfinding at various levels, ranging from the replacement of complete cards or assemblies to the identification of a single faulty component.

SCSI: The Ins and Outs

This book comes with a CD-ROM and will prove invaluable when you want to sort out a problem in a SCSI system.

Offer valid until 1 January 2006

Yes

I am ordering three books for just £29.90 (US$ 59.90)!*

*Excl. P&P
UK: £4.00
Europe: £5.00
Outside Europe: £8.00

PC Interfaces under Windows
304 Circuits
Build your own High-end Audio Equipment
Dictionary of Monitor Technology
ST62 Microcontrollers
Build your own Audio Valve Amplifiers
Designing Audio Circuits
Lasers: Theory and Practice
Handbook for Sound Technicians
Faultfinding in Computers and Digital Circuits
PC Service and Repair
SCSI: The Ins and Outs

2.4-GHz WirelessUSB™ Radio-on-a-Chip

Cypress Semiconductor Corp. recently introduced its next-generation 2.4-GHz WirelessUSB™ Radio-on-a-Chip. The new WirelessUSB LP offers the most robust solution with the lowest power consumption for keyboards, mice, and other Human Interface Devices (HIDs), while providing an unparalleled feature set enabling low BOM costs, higher data rate applications, and faster time to market.

WirelessUSB LP operates between 1.8 and 3.6 volts, using many advanced techniques to extend battery life in devices such as wireless mice. The new device uses Cypress’s patented Direct Sequence Spread Spectrum (DSSS) and frequency-agile technology to offer best-in-class interference immunity for a 2.4GHz radio system. This combination of low power consumption, interference immunity and low cost make it ideal for wireless HID applications such as keyboards, mice, remote controls, presentation tools and game controllers. WirelessUSB LP brings these benefits to the Voice over Internet Protocol (VoIP) market for products like wireless headsets by transferring data at a maximum speed of up to 1 Mbps.

WirelessUSB LP uses Cypress’s patent pending AutoRate Receiver™ technology enabling the device to receive data at any data rate without the need to negotiate speed changes. In addition, the device includes integrated features such as an automatic transaction sequencer, deep packet buffers (16 byte) for TX and RX, and a boost converter (generating up to 2.7V). These features simplify firmware design, offload processing requirements, allow for the use of lower cost microcontrollers, and power external devices such as optical sensors. The device also has highly optimized timing, including quick startup, fast channel changes, and immediate link turnaround capabilities. All of these enhanced features combine to significantly extend battery life, save design time and reduce overall system costs.

WirelessUSB LP lowers support call costs with the user-friendly KISSBind™ feature, which enables a user to intuitively link a wireless peripheral to the desired host by simply bringing them in very close proximity with one another. The device also supports the recently announced TouchWake™ capability to save additional battery power by allowing a WirelessUSB peripheral to instantly wake from an ultra-low-power sleep mode when the user touches it.

More information about the product is available online at www.cypress.com.

Zigbee-ready wireless network

Craflon, the wireless sensor semiconductor company, and Betatherm, a leading provider of high precision NTC thermistors and temperature probe assemblies, announced the successful deployment of Craflon’s wireless sensor network at Betatherm’s manufacturing plant in Galway. This is believed to be the first successful European deployment of the emergent IEEE 802.15.4 ZigBee wireless protocol in a monitoring system. The results of the deployment were outlined in a paper at the Radio Solutions Conference in Sophia Antipolis, France, on October 12.

The wireless sensor network measures temperature, light and humidity at several locations around the manufacturing plant and performs wireless data transmission at regular intervals to a PC server in Betatherm’s administrative office block over one hundred metres away. The measurement modules are powered by long-life batteries with a projected operational life of up to ten years.

The modules use Betatherm’s interchangeable Series II range of NTC thermistors, which are suited to high precision temperature sensing in plant monitoring applications because of their accuracy, sensitivity and robust construction. The wireless network operates in an environment that is particularly harsh for RF signals with the presence of electrical manufacturing equipment, a neighbouring three-storey metal clad building and a nearby telecommunications tower transmitting at microwave frequencies. Even under these conditions the modules are capable of transmitting over several hundred metres at the ZigBee ISM frequency of 2.4 GHz. The modules can also automatically use Craflon’s patent pending ‘Lo-Hop’ frequency hopping algorithm to avoid RF blocking in the event of interference from Wi-Fi access points or microwave ovens.

A live demo link to the wireless network in real-time operation is available at: http://www.crafon.com/crafon/app.html Evaluation kits of the modules are now available, and the module design, software stack, sensors, interface circuits, and RF deployment guidelines are available for license to OEMs in the energy conservation, building management and related sectors.

www.crafon.com
www.betatherm.com
Microchip: 49 new 16-bit microcontrollers in one launch

Microchip announces the PIC24 family, its first family of 16-bit PIC microcontrollers. The family debuts with 22 general-purpose devices and offers up to 40 MIPS performance, 16 kbytes of RAM and 256 kbytes of Flash program memory, in packages up to 100 pins. Besides the PIC24 family, Microchip also launched the dsPIC33 family. Both families maintain compatibility with Microchip’s MPLAB® Integrated Development Environment (IDE) platform and upward compatibility with all dsPIC® digital signal controllers.

There are two series of devices within the PIC24 family. The PIC24F offers a cost-effective step up in performance, memory and peripherals for many demanding 8-bit microcontroller applications. For even more demanding applications, the PIC24H offers 40 MIPS performance, more memory and additional peripherals, such as CAN communication modules. Overall, the PIC24 delivers increased performance without sacrificing interrupt flexibility and responsiveness, code execution predictability, easy I/O manipulation, C code efficiency and system integrity.

As with all Microchip microcontroller families, the PIC24 is designed to meet a wide range of needs across a broad spectrum of applications. Specific examples include consumer items such as handheld remote controls; communications applications such as optical network components; instrumentation and measurement applications such as handheld and remote terminals, POS terminals and medical instruments; and industrial applications such as factory automation systems, building monitor-and-control systems and security/access systems.

Additional key features include: 16 MIPS performance with cost-effective PIC24F family; 40 MIPS operation with high-performance PIC24H family; 64–256 kbytes of Flash program memory; 8–16 kbytes of RAM; 64–100 pin package options with JTAG; 2 x UART, 2 x SPI™ and 2 x I2C™; up to 2 CAN ports; Real Time Clock Calendar (RTCC); Direct Memory Access (DMA) on PIC24H family; 10-bit, 500 kspis A-to-D converter with 16 input channels (PIC24F); 2 x 12-bit, 500 kspis A-to-D converters with 16 input channels (PIC24H).

The new dsPIC33 family is highly compatible with the existing dsPIC30 family — it has the same instruction set, has compatible pinouts, and offers an attractive price and feature set for applications requiring larger Flash and RAM.

The two initial dsPIC33 product families share the following key features: 40 MIPS deterministic performance; 3.3V operation; 64 to 256 Kbytes Flash; 8 to 30 Kbytes RAM; 64- to 100-Pin TQFP packages; serial I/O subsystems, including up to two each: SPI™, I2C™, UART and CAN; Direct Memory Access (DMA); one or two 500 kspis, 12-bit A/D converters; Codec interface. The dsPIC33 Motor-Control and Power-Conversion DSCs have one or two 1.1 Msps 10-bit A/D converters; up to 8 sample-and-holds for simultaneous sampling; specialized PWM for Motor-Control, Lighting and Power-Conversion applications; Quadrature Encoder Interface.

Both new families are marked by backwards compatibility with existing products. A similar pinout and an identical instruction set make the transition from PIC18 to the 16-bit PIC24 as easy as possible. Existing Microchip development tools such as the MPLAB C30 C compiler and the MPLAB PM4 universal device programmer can be used.

Microchip has also created the Explorer 16 Development board to support all 16-bit PIC24 microcontrollers and 16-bit dsPIC digital signal controllers.

Samples are available in the first quarter of 2006 and volume production is scheduled for the second quarter of that year. The Explorer 16 kit (p/n DM240001) will be available from November 2005.

Further information from www.microchip.com
Fusion of anti-collision radar and video sensors for pedestrian safety

Cambridge Consultants has developed pedestrian-sensing software to support its anti-collision radar for automobiles. The technology allows radar and video sensors to work in tandem to sense pedestrians or cyclists enabling the introduction of advanced active safety concepts such as tilting the bonnet to mitigate an impact or deploying external airbags.

This 'sensor fusion' technology uses the forward-looking radar to cue the video, greatly reducing the amount of real-time processing required. Cambridge Consultants has exploited this to develop a system that can run on a low-cost DSP (digital signal processor) developed for mass consumer appliances making the technology well suited to the cost demands of the automobile industry.

This low cost focus is complemented by Cambridge Consultants' innovative radar technology, CCL-Soficar, which operates at the low frequency of 5.8 GHz — greatly reducing system costs compared with conventional automobile radar technologies operating at 24 or 77 GHz.

The new software performs object classification. It uses radar scatter information, object movement information, shape and colour matching and other techniques to distinguish humans from other moving objects.

Analysis is performed in real-time. Results from the company's prototype system, which is based on a low-cost DSP, are currently generated at a typical rate of 10 to 20 Hz (or every 100 to 50 milliseconds). Combined with the radar system's 20 to 25 metre range, this provides the time margin required to initiate active safety measures.

Among the impact mitigation measures under discussion by the industry are tilting the bonnet to lessen the severity of impact, firing external airbags, and assisting braking.

It's likely that the final object classification rate will be increased to around 50 Hz for commercial use by selecting higher clock speed versions of the DSP — to match the new generations of fast, low-cost image sensors currently being developed for automotive applications.

Cambridge Consultants' sensor fusion technology is equally applicable to improving the performance of next-generation reversing aids, by providing the driver with a full colour display where the object classification software automatically identifies objects, along with approximate distance information, to help drivers take necessary action.

This new development is a valuable enhancement of the CCL-Soficar anti-collision radar technology announced in 2003. CCL-Soficar is a pulsed radar system working in the 5.8-GHz band, rather than the 24 or 77 GHz bands used in alternative anti-collision radar approaches. The effect of this relatively low frequency is to reduce the cost of the components required to build a system, and avoid the time and cost overhead which precision assembly of higher frequency equipment imposes. With this technology, just four radar modules and one electronic control unit (ECU) are required to provide 360 degree protection for an automobile — further reducing the bill of materials compared with alternative approaches, which can require two or more modules to be installed on every side of a vehicle.

The new video-equipped CCL-Soficar demonstration system is installed in a mid-range car, and is currently being shown to European automobile and accessory manufacturers.

Cambridge Consultants Ltd., Science Park, Milton Road, Cambridge CB4 ODW, UK.
Tel: +44 (0)1223 420024; Fax: +44 (0)1223 423373; www.cambridgeconsultants.com

Class D controller chip

International Rectifier recently introduced the IRS20124S, a 200V control IC developed specifically for Class D audio applications up to 500W per channel. Integrated features such as adjustable dead-time generation and bi-directional over-current sensing protect the amplifier system. Also, these features allow audio designers to simplify circuits and minimize component count for Class D audio amplifiers in home theatre entertainment systems, audio-video receivers and automotive sound systems.

The internal, selectable dead-time generation circuit is thermally compensated for stability, and is immune to noise and supply voltage fluctuations to help improve total harmonic distortion, or THD. The IRS20124S has built-in bi-directional current sensing and combines with an integrated shutdown function to protect the output MOSFETs when an over-current condition occurs, such as a short-circuited speaker wire.

The new IRS20124S Class D audio high voltage control IC is available immediately. The device is lead-free and RoHS-compliant.

www.irf.com

(057175-3)
FREE Layout Software

EASY To Use!

Very **LOW** Cost!

Extremely **FAST** Turnaround!

DOWNLOAD our free CAD software

DESIGN your two or four layer PC boards

SEND us your design with just a click

RECEIVE top quality boards in just days

expresspcb.com

Lichfield Electronics

www.LichfieldElectronics.co.uk

- Digital Multimeter
 - A do-it-yourself test meter with vol., ohm & current meters. And divide test.
 - £16.99

- AM/FM Radio
 - A kit to make an AM/FM radio in an attractive case.
 - £16.99

- Shortwave Receiver
 - Build yourself a shortwave receiver to listen to transmissions from around the world.
 - £9.99

- Anyue All In One Soldering Iron
 - All-in-one soldering iron includes a temperature controlled iron, 6-15V 1.5A PSU, and 100W 230V, 50W 230V iron.
 - £24.99

- 12V/3V DIY PSU
 - A Do-It-Yourself 12V, 3V regulated power supply. Plug into a 110V or 230V mains supply. Suitable for up to 300mA.
 - £17.99

Special Christmas Saver packs Available!

See Website. Shop open Mon-Sat.

City centre location

9:00-5:00

A QUANTUM LEAP IN EMBEDDED CONTROLLERS

QuickFIRE SUPERCONTROLLERS

Our range provides:

- The fastest 68000 based Core up to 66 Mhz.
- Extensive I/O: Serial, IrDA, SPI, P, Analogue, Timers/Counters, RTC, etc.
- Large Memory Capacity: Flash, SRAM, DRAM.
- Supports: Mono & Colour LCD's, Touch Panels & Keypads, Very Low Power.

ALSO LOW COST

- Target easily & quickly.
 - Full ANSI 'C' compiler, assembler & linker all Windows32 based.
 - Source Level Debug.
 - Full Driver Support with Libraries.
 - Real Time Multitasking OS with a free run time licence.
 - FREE Unlimited email support.

www.cms.uk.com

see our web site for full details

CAMBRIDGE MICROPROCESSOR SYSTEMS LTD

Unit 17-18 Zone 'D' Chelmsford Rd. Ind. Est. Great Dunmow, Essex CM6 1XG

Telephone: 01371 875644
email: sales@cms.uk.com
Displays are probably the most important man-machine interface. Everywhere you look — televisions, monitors, and industrial applications — the old-faithful CRT display technology is losing ground and being displaced by more up-to-date technologies, which are also conquering new application areas. Here we look at the current situation and examine possible future trends.

In 1897, Karl Ferdinand Braun wrote a paper about 'a method for demonstrating and studying the time progression of variable currents'. In that paper, he proposed using a cathode ray tube (CRT) as a quickly responding display and observation instrument. Braun's idea quickly led to unforeseen new uses. A patent for the 'Braun tube' was awarded in 1907, and in 1930 the German physicist Manfred von Ardenne, who was only 23 at the time, succeeded in transmitting a television image using only electronic techniques. The basic principle hasn't changed since then: an electron beam strikes a phosphor layer inside a vacuum valve and causes it to emit light. A cathode ray tube consists of a glass envelope with a front surface that is usually convex. That is necessary to withstand the powerful pressure on the outside of the CRT, because the air is evacuated from picture tubes to create a vacuum. A filament and cathode are located in the funnel-shaped neck of the CRT. They are surrounded by a 'Wehnelt cylinder', which forces the electrons to escape through a small hole. The cathode and Wehnelt cylinder are held at a negative potential that can be adjusted to control the brightness of the image. That assembly is complemented by a set of horizontal and vertical deflection coils and an anode, which is driven by a positive potential. Electrostatic beam deflection was used initially, but it was quickly replaced by magnetic deflection. These components collectively form an assembly that is called an 'electron gun'. The inside surface of the glass envelope has a graphite coating that is connected to a very high anode potential (as much as 17,000 V). A mask in the form of a dot mask, slot mask or aperture grill is located in front of the phosphor layer (see reference [1]). The evolution of the CRT can be read from the steadily increasing deflection angles and screen sizes. The CRT depth can be decreased by using a larger deflection angle. The most commonly used angles until recently were 65 degrees, 90 degrees and 110 degrees. Types with a 125-degree deflection angle and a depth of around 40 cm are now available.
The screen diagonal of CRTs was 23 cm in 1953. In 1955, the standard size was 43 cm. The 110-degree deflection technical breakthrough came in 1970 and led to the prevalence of 66-cm television sets. In 1987, several exhibitors exhibited 82-cm (32-inch) sets, and Gründig even exhibited a 95-cm (36-inch) CRT display. The set weighed in at a hefty 125 kg and had a suggested price of 8000 German marks. In 2001, Sony presented the KV-40XBR700 'Super Triniton' with a 101-cm screen diagonal. That was the high point of the trend everywhere in the world.

HDTV stimulates innovation

The Japanese television institution NHK has been working to develop high-definition television (HDTV; also known as 'Hi-Vision' in Japan) since 1964. Instead of 525 horizontal lines as specified by the NTSC standard commonly used in Japan, the high-definition system was specified to have 1125 lines. It was first demonstrated in 1985 using CRTs and projectors. The first broadcasting tests started in 1986. Digital Hi-Vision broadcasts via satellite were initiated in 2000, and high-definition terrestrial systems were introduced in 2003. The systems are planned to provide coverage for 80% of Japanese households by the end of the coming year.

However, this all requires new displays that can handle the newly created HDTV broadcast standards designated as '1280 x 720p/60' and '1920 x 1080i/30'. The first number of the designation is the number of pixels per line, and the second is the number of lines. The letter 'p' or 'i' indicates the type of image reproduction used: 'progressive' (p) or 'interlaced' (i) [see inset]. The final digit specifies the number of image frames transmitted per second. European broadcasters must choose between 1080i/25 and 750p/50. For comparison, the current PAL TV system effectively provides only 2 x 288 lines per image frame. Incidentally, Europe has also been trying since 1986 to establish its own HDTV system with 1250 lines and a 50-Hz half-frame rate. A non-interlaced technique was also on the agenda. Unfortunately, the technology was developed without any attention to the market. On British behest, in late 1992 the EU was prevented from investing any more funds in the programme. The entire affair ended up as a multi-million boondoggle that set back the development of European high-resolution television by many years.

Large-format plasma displays

In the 1970s, NHK established a plasma laboratory in its Science and Technical Research Laboratories (STRL).

Interlaced versus progressive

Television broadcasting using interlaced frames was first demonstrated at the German Broadcasting Exhibition in 1935. The technique involves splitting the image frames into two subframes and writing them successively - first the odd-numbered lines, and the even-numbered lines. The persistence of the phosphor and the latency of our eyes cause the two images to merge. The apparent frame rate is thus doubled, which reduces flicker and the required bandwidth. However, the interlacing technique also has drawbacks. For instance, there is a time offset between the two subframes, which causes sawtooth patterns to be generated on vertical edges in rapidly changing parts of the image. Interlacing also causes major difficulties for modern video encoding methods used to reduce data rates.

As a result, the 720p standard has become established in the course of the conversion from the European PAL television standard (which effectively provides 2 sets of 288 lines) to high-resolution television (HDTV). Here '720' designates the number of lines and 'p' stands for 'progressive display', which means full-frame display without interlacing. However, good-quality imagery can also be produced using the interlaced HDTV standard 1080i. The next stage is already being discussed with the 1080p standard. It's claimed that the new displays won't have any trouble handling that standard.

![Figure 1. CRT televisions have been around for nearly 100 years, this one was made in 1960. (Photo: Sony)](image)

Experts from Matsushita also worked in the plasma laboratory. STRL developed the phosphors for the three primary colours (red, green and blue) and the fill gas for the cells. Fujitsu began development of plasma-based displays in 1967 and presented the first panels in 1992, with a display diagonal of 21 inches (53 cm). The world market for plasma TVs may have been as much as 6 million units in that year, which was more than twice as many as in the previous year. Matsushita, which sells products under the Panasonic brand name, is by its own account the world's largest producer, followed by Samsung, LG Electronics and Pioneer. At this year's IFA exhibition in Germany, Panasonic presented 50- and 65-inch displays with 'true' HDTV resolution of 1920 x 1080 pixels. For the domestic market, 1366 x 768 is probably good enough for a start. Samsung also has no plans to market its newly presented 1080-line displays in Europe for the time being.

The largest plasma TV screen yet developed, with a diagonal of 259 cm (102 inches) and a resolution of 1920 x 1080 pixels, also comes from the Korean firm. Even if it only represents a feasibility study, currently available plasma display panels (PDPs) can certainly hold their own without it. With display diagonals of 165 cm or more, they transform living rooms and pubs into personal home cinemas. PDPs are primarily used in television sets and as display modules in locations such as fairs and airports.
large diagonals to be manufactured relatively economically. However, these benefits come at the cost of slightly higher power consumption. The power consumption of plasma displays is variable and reaches a maximum with large white areas, while the power consumption of LCDs is primarily determined by the background illumination source and is nearly constant. The total power consumption of some plasma displays is as much as 50% higher. However, Panasonic recently proved the opposite situation during an internal demonstration: plasma displays can perform better than LCDs with low-brightness imagery.

In any case, the time when plasma displays required enormous fans is long past. However, the useful life of the displays is still a subject of heated debate. The maximum operating time of plasma displays is often specified as 30,000 hours, but figures of 50,000 to as much as 60,000 hours can now be regarded as realistic. After that time, the luminous efficiency of the phosphor starts to gradually decrease, so accurate colour reproduction is no longer possible. On the other hand, 'burn-in' effects are quite rare with proper use.

A liquid-crystal all-rounder

The growing significance of liquid-crystal displays (LCDs) is due to the large variety and versatility of their potential uses. Liquid crystals were first described in 1888 by the Austrian Friedrich Miehltzer, and in 1963 the American R. Williams discovered their electro-optical properties. The first LC display was created in 1968, and in 1973 Sharp introduced a pocket calculator with an LCD. In June 1983, Casio presented the first LCD pocket television set with a 2.7-inch (67-mm) display. Starting in 1985, portable computers became a reality with the Toshiba model T1000, and similar colour displays were first marketed in the early 1990s. It's estimated that around three million LCD television sets were sold worldwide in 2003, and the predicted figure for 2008 is 30 million. Turnover from flat-screen displays increased from 45 million euros in 2003 to 80 billion euros in 2006, with LCDs accounting for around 70% to 80% of that figure.

A LC display is constructed using the sandwich principle (see Figure 3). Light from a backlight source passes through a polarizing filter on the outer surface of the first glass plate and the first electrode layer. After that it encounters the liquid crystal layer, which is located between two orientation layers. That is followed by another electrode layer, an insulation layer, a colour filter, a glass sheet, and a second polarization filter. The orientation layers are aligned at right angles to each other, which causes the crystals to assume a helical shape along the light path in the absence of an applied electric field. The light is polarized in a specific plane by the first polarizing filter, and the plane of polarization rotates by 90 degrees as the light passes through the liquid crystal layer. That allows it to emerge through the second polarization filter, which is suitably rotated by 90 degrees relative to the first filter. This process yields a bright pixel.

If an electric field is applied to the crystals, they lose their 'twist'. As a result, the plane of polarization of the light does not change during its passage, so the light is blocked by the second polarization filter. The pixel thus appears to be dark.

Stimulating light emission from noble gasses

Although plasma displays have a certain external resemblance to liquid-crystal displays, their operating principle is completely different (see Figure 2). Two glass substrates enclose a large number of small cells that are filled with a mixture of noble gasses argon, neon and xenon and whose walls are coated with a phosphor for one of the three primary colours (red, green and blue) [2]. Ultraviolet light is generated in each cell by a high voltage (approximately 500 V) applied to an address electrode and a display electrode. The ultraviolet light is converted into visible red, green or blue light by the phosphor coating on the walls of the cell. The question of whether it is better to use a DC voltage or an AC voltage to excite light emission from the plasma was disputed for a long time. Most current PDPs use AC excitation. According to video expert Wolfgang Klinger of Panasonic, they have lower power consumption than DC types.

Relative to CRT displays, plasma displays have better brightness uniformity between the centre of the display and the edge regions. They also allow displays with

Figure 3. Schematic diagram of an LCD. Polarized light is 'rotated' by the helical liquid crystals and can thus exit via the second polarizing filter, which is rotated by 90 degrees relative to the first one (see text). The pixel thus appears to be bright. If an electric field is applied, the liquid crystals straighten out and no longer rotate the plane of polarization of the light. That results in a dark pixel. (Diagram: Matsch)
Overcoming teething troubles

LC displays and projectors are classified into two types: reflective and transmissive. With a reflective type, light from an external source is reflected by an internal mirror, while a transmissive type uses light produced by a built-in lamp. The light must also pass through the LC layer during projection. If the pixels are not driven by transistors, the display is called a 'passive' display. With an active display, which is also called a thin-film transistor (TFT) display, each pixel is driven by a transistor. That results in a very fast frame rate. The response times of top-end displays are currently around 10 ms, with values as low as 4 ms now being quoted. The luminance of LCDs can be as high as 800 candela per square metre, while a realistic value for PDPs is only 300 cd/m², although some manufacturers now claim up to 1500 cd/m². Plasma displays have the advantage with regard to contrast, which is the ratio of the luminance of the brightest possible and darkest possible pixels. They have values of 800:1 to 5000:1, while LCDs sport figures of 400:1 to 1000:1. However, that situation could change. NEC exhibited a LCD monitor with LED background illumination that can achieve precise colour reproduction. That makes an integrated luminescent lamp unnecessary. Dynamic control of the brightness of the backlight allows the illumination to be increased for bright scenes and reduced for dark scenes. Besides reducing energy consumption, that makes dark images truly dark. Incidentally, a restricted viewing angle is now regarded as a teething problem that has long since been overcome. Viewing angles of up to 180 degrees are not uncommon. Sharp and Philips have introduced new displays that show completely different images depending on the viewing angle (Figure 4).

Big is beautiful

It is already possible to construct displays using LC technology with display diagonals of 3.5 to 208 cm (1.5 to 82 inches) and resolutions up to 1920 x 1080. Even QUXGA-W resolution (3840 x 2400 pixels) is feasible for computer monitors. The largest LC display to date, which Samsung presented a few weeks ago, still doesn’t represent the end of the line. According to reports from a recent international display convention, a 102-inch unit is currently being developed.

The market leader in LCD technology is by all accounts Sharp. It has a 45-inch display with HDTV resolution (1920 x 1080) in its product line for a year already, and a similar 65-inch version was exhibited at the fair. The production figure was said to be 1000 units per month. Loewe even displayed a 65-inch set in Berlin with an integrated HDTV receiver.

However, the prices of LCDs are still quite high, particularly for true HDTV displays. For instance, the official selling price in Japan of the 65-inch display exhibited by Sharp in Berlin was said to be the equivalent of 15,560, although it was readily available in Tokyo’s Akihabar electronics district for as low as 12,500. For comparison, Sharp’s 45-inch display is available in Germany for less than 6000.

Production capacities are presently being sharply increased to allow large and medium-sized displays to be produced more economically. Joint ventures for this purpose have been established by Philips with LG and Sony with Samsung. Fujitsu and Hitachi also operate a joint factory.

Sharp and other manufacturers already have production lines that mass-produce man-sized ‘mother panels’. The first eighth-generation plant is currently being built in the Japanese city of Kameyama. It will produce panels with dimensions of 2.40 x 3.16 metres starting October 2006.

At the same time that screen sizes are increasing, pixel sizes are shrinking. A pixel density of 100 to 200 pixels per inch (ppl) is currently possible, which for example would allow 5-cm displays to be produced in QVGA format (320 x 240) or 9.4-cm LCDs with VGA resolution (640 x 480).

Organic LEDs

Displays made from organic light-emitting diodes (OLEDs) are one of the most recent flat-screen technologies and have already found a market niche for use in mobile phones and MP3 players.

Development of organic materials began at Kodak in the late 1970s. The key to the technology is semiconducting organic polymers that are applied to a thin glass sheet or plastic film and emit light when a voltage is applied [4]. OLEDs thus do not require background illumination.

Organic displays are thin, lightweight and bright, which makes them suitable for use in small portable devices (Figure 5). In addition, OLEDs have high switching speeds, which enables them to display moving images quite well. There are approximately 50 manufacturers that supply components or finished products, including Covion, Lit-Array, Kodak, Osram, Philips, Pioneer, RIT-display, Samsung, Sanyo, Seiklo, Sharp, Siemens, Solomon, Sony, Truly Semiconductors, Universal Display, and Vitex. Intensive research is still being conducted, for example at the Fraunhofer Institute for Photonic Microsystems (IPMS) in Dresden.
It is expected that in the future it will be possible to produce OLEDs that can be folded and rolled up, which would allow them to provide serious competition to paper (Figure 6). Initial prototypes are currently being presented, but there is still a long way to go before products suitable for mass production are available. Here Europe could have a new opportunity to again make a productive contribution in the display field. Early this year, former German Federal Minister of Research Edelgard Bulmahn announced the 'OLED Research and Development Initiative 2015', with the stated objective of investing around 100 million euros in research during the coming years.

Displays instead of wallpaper

Philips, which is participating in the programme, is even researching light-emitting wallpaper and drapery. Dietrich Bertram, Manager of OLED Development Light at Philips, is optimistic: 'OLEDs will be significantly more efficient than incandescent lamps, even if their manufacturing costs are several times as high. Light-emitting curtains or wallpaper could be commercially available in three to five years.'

However, there are still a lot of hurdles to overcome before large-format OLEDs can conquer major application areas. The primary problems are excessively short useful life and variable aging of the three pigments (red, green and blue). The blue pigment fades especially quickly. It might take quite a while to achieve the target figure of at least 40,000 operating hours for TV panels. The significant number of transistors required per pixel (two to four) also makes the system quite complex. Furthermore, there is currently no manufacturing technique available for mass production of large-format panels. Nevertheless, many OLED supporters already regard them as a possible competitor to LCDs, particularly in sizes greater than 2 inches, in good part due to the combination of high resolution and low energy consumption. Once again, the Koreans managed to come up with a real topper. Samsung presented the latest prototype yet produced, with a display diagonal of 101 cm (40 inches), a resolution of 1280 x 800 pixels, and a good contrast ratio. However, such displays are still a long way away from the mass production stage.

Fit for the future

An important criterion for all display technologies is resistance to obsolescence. CRT-based devices are clearly approaching the end of their product life cycle and will vanish from the market. Plasma technology will primarily remain attractive for large displays. OLEDs have already become established in a small market niche. By contrast, LCDs have reached a high level of technological and market maturity, but they still harbour an enormous development potential. Manufacturers are making substantial investments in research and development. At Sharp, that amounts to the impressive figure of around 7% of their annual global turnover. The growth rates also clearly argue in favour of flat screens, such as LCDs and plasma displays. Analysts expect turnover for both types to jump by more than 30% this year. The German Society for Entertainment and Communications Electronics anticipates that German consumers will spend more than 1.5 billion euros on new displays this year. In the coming year, more than 2.4 million LCDs, 550,000 PDPs, 170,000 front projectors and 80,000 rear projectors could be sold – as well as another 3.2 million CRT-based devices.

The cathode-ray principle may even experience a renaissance, because an entirely new technique is waiting in the wings. Toshiba and Canon are jointly developing a technology called 'surface-conduction electron emitter display' (SED). It promises to yield a resolution of 1920 x 1080 pixels, short response times, low power consumption, large display diagonals (50 inches or more), and high brightness without background illumination. The contrast ratio is said to be 100,000:1. This technique, like that of conventional CRT televisions, is based on directed emission of electrons that cause a phosphorescent layer integrated into the glass surface of the front to emit light (Figure 7). However, a separate electron emitter is provided for each pixel. The first pilot plant went into production in late August in the Japanese city of Hirotsuka. The Japanese aim to produce 75,000 displays per month by late 2007 and win a market share of 30% for flat-panel displays larger than 50 inches.

Useful links:
USB has never been so simple...

USB to TTL Serial Cable
- Simple and easy way to give USB support to your designs
- Connects directly to microcontroller UART or I/O pins
- No circuitry integrated into sleek, moulded USB plug
- 4-way connector (Gnd, RX, TX and 5V)
- Supplied with PC drivers, example code and tutorial
- Special Price of £29.99 including VAT

AVIT Research also supply:
PCB Bus Tool - Allows your PC to monitor and control the bus
- Invaluable tool for designers using the bus
- See website for full details

www.avitresearch.co.uk

PicoScope 3000 Series

PC Oscilloscopes

The PicoScope 3000 series oscilloscopes are the latest offerings from the market leader in PC oscilloscopes combining high bandwidths with large buffer memories. Using the latest advances in electronics, the oscilloscopes connect to the USB port of any modern PC, making full use of the PC's processing capabilities, large screens and familiar graphical user interfaces.

- **High performance**: 10GS/s sampling rate & 200MHz bandwidth
- **1MB buffer memory**
- **High speed USB 2.0 interface**
- **Advanced display & trigger modes**
- **Compact & portable**
- **Supplied with PicoScope & PicoLog software**

Tel: 01480 396395

www.picotech.com/scope318
People have been busy experimenting with electricity ever since it was ‘discovered’. Many good things have come out of these experiments, and the world would look completely different without all our electronic aids. But there’s also another side to the picture.

S.H.J.A. Vossen
and B.J.A.M. van Leersum

Take the radiation from a broadcasting antenna, make it 20 times as strong, and bundle the radiated energy into a narrow beam: you have a powerful weapon in your hands! Such systems are already available to the U.S. army for dispersing crowds.

For example, the Vehicle Mounted Area Denial System (VMADS) illustrated in Figure 1 and Figure 2 emits strong electromagnetic waves (EM waves) that cause a painful sensation in the skin. It’s not known whether there are any other effects, but those of you who read our electrosmog article in the June issue will certainly realise that other effects are possible.

The power of such electromagnetic weapons is naturally scaleable, and it can be quite a bit higher than the example we just mentioned.

Susceptible

We’re accustomed to using a wide variety of electronic devices and systems in our everyday environment. The amount of electronics used in cars is increasing all the time. Even cyclists and hikers are kitted out with all sorts of gadgets, such as GPS receivers for determining their location and the route to be followed. The use of wireless communication media has also increased enormously, and there’s certainly no end in sight to new developments.

All these devices work with electricity, and that means they generate electo-
magnetic (EM) fields. Whether these fields are desired depends on the application. However, there's no question that all electronic systems are also susceptible to external EM fields. For that reason, government bodies set limits to the amount of electromagnetic interference (EMI) equipment and systems can and may generate. These protective requirements are specified in electromagnetic compatibility (EMC) standards, and they are specific to particular products or classes of products.

In Europe, EMC standards are specified in the European EMC Directive (89/336). However, most EMC requirements are limited to frequencies below 1000 MHz, so what happens to or with equipment at frequencies above 1000 MHz is not known.

Interference signals
There are various ways to generate directed electromagnetic radiation at high power for the purpose of interfering with the operation of electronic equipment or totally disabling it. One of these technologies is 'High-Power Microwaves' (HPM).

EM waves from an HPM weapon are very difficult to defend against in several regards, because they:

- propagate at the speed of light;
- are invisible;
- are not affected by weather conditions;
- are often difficult to detect;
- and the supply of 'ammunition' is practically unlimited.

HPM waves can penetrate into a system in different manners. They can enter via 'front-door' coupling or 'back-door' coupling (see Figure 3). With front-door coupling, energy is coupled into the system via sensors and antennas used to detect radio signals. The interference signal can lie inside or outside the frequency band the sensors and/or antennas are normally designed to receive (in-band versus out-of-band coupling). With back-door coupling, HPM energy penetrates the system via ventilation openings, doors, cables, and so on.

HPM is often compared to electromagnetic pulses (EMPs), but an EMP is actually a variation on the idea of high-power microwaves. EMPs are generated by nuclear explosions that cause a natural reaction with molecules in the atmosphere.

Waveforms
HPM can occur in four forms (see Figure 4). The continuous waveform shown in Figure 4a is characterised by its frequency and power. This sort of waveform is usually generated using a resonant microwave tube, such as the
magnetron used in standard microwave ovens.
The narrowband waveform shown in Figure 4b is the most commonly used form of HPM. Its characteristics are determined by the frequency, peak power, pulse width or energy content of each pulse, pulse repetition frequency, average power, and duty cycle. The advantage of this form is that it's easy to generate a high peak power with a relatively modest total power.

There are two reasons for using a repetitive waveform as an interference signal. The first reason is that it has a higher chance of success because the specific time when interference occurs is time-critical. The second reason is that error-correction systems are often used in systems to combat minor disturbances, which can also occur inside the systems. However, such systems will fail if multiple small disturbances are created in rapid succession.

The types of devices used as sources for this type of waveform include travelling wave tubes, magnetrons, klystrons, and virtual cathode oscillators (vircators).

The third type of waveform is the damped sine wave shown in Figure 4c. Here the important parameters are the dominant frequency, peak power, damping coefficient, and pulse energy. If the waveform is repetitive, the pulse repetition frequency and average power are also important. The advantage of this waveform is that it can be generated using an 'impulse source', in which stored energy is discharged very quickly into antenna. Expensive vacuum valves are unnecessary with such a generator.
The final waveform (shown in Figure 4d) is called 'ultra-wideband'. Its typical parameters are peak power, rise time, fall time, and bandwidth. This waveform contains a large number of frequencies. However, the peak power of each individual frequency is relatively modest, which reduces the effect on equipment and systems.
This waveform can also be generated without using expensive vacuum valves. However, it requires an antenna that is much more complex than the antennas for the other waveforms (see Figure 5).

<table>
<thead>
<tr>
<th>Table 1. Classification of HPM effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
</tr>
</tbody>
</table>
| Damage | • Discard
• Repair
• Replace fuse
• Repair software |
| Denial | • As long as the interference signal is present and a short time after the interference signal goes away (no damage)
• As long as the user is busy solving problems |
| Disturbance | • Behaviour altered, no longer usable (no damage or denial)
• Minor errors, still usable |
| Deception | • Modified information paths, insertion of false data |

Towards the E-bomb
Systems for generating all the described pulse forms are theoretically conceivable. The emitted power is scaleable, with the upper limit determined by size and the available source of electrical energy. We already mentioned an example of an operational system: the VMADS system.

Another option is to build an HPM system into a ballistic or rocket-powered projectile. From a technical perspective, there are two options for such systems. The first option is to generate HPM using a fully electrical system powered by a source of stored electrical energy, such as a battery, capacitors, or the like.

The second option is to use an explosion-driven HPM system. In the latter type of system, a capacitor generates an initial current in a coil. A metal tube filled with an explosive is located inside the coil. Controlled detonation of the explosive causes rapid compression of
the magnetic flux. At the same time, the surface area and inductance of the coil decrease, which causes the initial current to surge to a very high value (see Figure 6). The pulse generated in this manner is a damped sine wave or single broadband pulse. The field is emitted in all directions.

A disadvantage of the 'E-bomb' described above is that it can emit only a single pulse. There is also a risk of injuries or fatalities when explosives are used. Another problem is that up to now, all attempts to use an antenna to radiate the extremely high power that can be generated by an explosion-driven flux compressor have been unsuccessful.

Social safety and security

We now present several examples that show why HPM could form a threat. These examples are fictitious, and they are intended to stimulate our readers to think about the issue.

Scenario 1

We have all recently witnessed the attacks on the public transport network in London. Suppose HPM had also been used in addition to explosives. That would have made wireless communication between the various emergency services practically impossible, which could have significantly increased the number of victims.

In addition, HPM could have been used to disable the surveillance systems, which would have made it considerably more difficult to track down the perpetrators.

Scenario 2

Nowadays, electronic aids are used intensively everywhere in the world. The Internet is also part of this picture. Providers of commercial and financial services naturally take advantage of this by offering all sorts of electronic services via the Internet. The per capita density of computers with Internet connections is very high in most West European countries. In many of these countries, the Internet network is linked to the rest of the world via a central node using a large number of computers. If all these computers were affected by HPM such that they could no longer function properly, the impact would be enormous.

Suppose that on the exact day when salary payments are transferred, the decimal point were to be shifted two

About the authors

Stefan H.J.A. Vossen has been working in the Observation Systems business unit of TNO Defence, Security and Safety since 2002 (TNO is the institute for technology and physics in the Netherlands). Besides his scientific activities in the field of the effects of electromagnetic fields on people and equipment, he is involved in fostering commercial applications of that knowledge. His subjects of interest include EMC, intentional electromagnetic interference, health, screening materials and applications for such materials, foods, and medical applications. He is also actively involved in developing new technologies and applications (including numerical applications) for TNO in order to deal with future problems.

Bart J.A.M. van Leersum has been working in the Observation Systems business unit of TNO Defence, Security and Safety since 1995. He is engaged in scientific activities in the field of the effects of electromagnetic fields on people and equipment, and he is responsible for knowledge acquisition in his role as research programme manager. His subjects of interest include EMC, EMI, intentional EMI, HPM, antenna technology, integrated topside design, and health-related aspects of EM radiation. His activities range from developing numerical spatial models to formulating and executing test methods.

Figure 6. An explosion-driven flux compressor. The explosion causes the metal tube to expand, with the result that the coil is shortened out and flux is compressed frontally. That causes an electromagnetic pulse to be radiated.
positions to the left by an intentionally generated glitch. That would cause a lot of confusion and turmoil.

Another example is cashpoints or electronic payment transactions using the bankcard system. If the system stopped working during the pre-Christmas shopping season, people would be unable to make their purchases for the holidays. Beside major economic mayhem, that would cause a lot of emotional damage.

Scenario 3

This example is probably one of the best-known examples. Suppose an 'E-bomb' (HPM in projectile form) released its energy in a region containing many important electronic nodes. The way an E-bomb explodes is illustrated in **Figure 8**, where the EM wave is represented as white rings in the air. All electronic devices inside the white rings would be unusable. There is a lot of speculation in the media about such E-bombs. However, engineers and scientists are increasingly questioning the feasibility of generating such high levels of electromagnetic energy from a relatively small bomb.

Protection

Generating HPM is probably not particularly difficult (consider the microwave oven, for example). Protecting against HPM is rather more difficult, but it is possible. The most important factor is that persons responsible for equipment and systems must be aware of the phenomenon of high-power microwaves (HPM) and the potential consequences for them. A well-known protective measure is a 'Faraday cage'. That is an excellent solution for an isolated system, but as soon as communication, ventilation or any other sort of interaction must take place via a hole in the cage, it cannot provide adequate protection against HPM in all cases. In addition to the familiar metallic materials, synthetic and composite materials that can provide outstanding protection are now available to help guard against HPM. Normally speaking, such systems are designed to comply with EMC standards. The measures used can be recognised by features such as special cable feed-throughs, screening grilles, and contact springs in computer cabinets.

As indicated in **Table 1**, the effects of HPM can resemble minor disturbances that occur normally in equipment and systems (see **Figure 7**). That makes it especially difficult to recognise intentional sabotage (in case of military applications, for example).

Don't try this at home!

After reading this article, some of our more experimentally minded readers may be inclined to try a few experiments on their own with an old microwave oven. We emphatically advise against such experiments, because they can create potentially fatal situations!

Protection

Generating HPM is probably not particularly difficult (consider the microwave oven, for example). Protecting against HPM is rather more difficult, but it is possible. The most important factor is that persons responsible for equipment and systems must be aware of the phenomenon of high-power microwaves (HPM) and the potential consequences for them. A well-known protective measure is a 'Faraday cage'. That is an excellent solution for an isolated system, but as soon as communication, ventilation or any other sort of interaction must take place via a hole in the cage, it cannot provide adequate protection against HPM in all cases. In addition to the familiar metallic materials, synthetic and composite materials that can provide outstanding protection are now available to help guard against HPM. Normally speaking, such systems are designed to comply with EMC standards. The measures used can be recognised by features such as special cable feed-throughs, screening grilles, and contact springs in computer cabinets.

As indicated in **Table 1**, the effects of HPM can resemble minor disturbances that occur normally in equipment and systems (see **Figure 7**). That makes it especially difficult to recognise intentional sabotage (in case of military applications, for example).

Worried?

In this article, we have shown why HPM can cause interference to equipment and systems. Protection is possible, but it requires an awareness of HPM. In addition, it is very difficult to find a single, general-purpose defence against HPM, because one of the specific features of HPM is that the form of threat is not predictable due to the large variety of options.

HPM will doubtless be used on a large scale in the future, because it is a highly promising non-lethal weapon for use in the military theatre and civilian crime prevention. Naturally, people are also afraid that terrorists might employ HPM systems to wreak large-scale damage. Our provisional estimation is that such a scenario is unlikely because it would be difficult to claim responsibility for an HPM attack, in part due to the difficulty of detection and the unpredictable nature of the effects of HPM. Up to now, terrorists evidently prefer highly violent (and fatal) actions.

Figure 4. The various HPM waveform options.

Figure 5. An impulse radiating antenna developed by TNO, Netherlands.

Figure 7. A burned-out diode on a chip (top) and a 'hang' computer (bottom); caused by an internal fault or an external influence?
Get the full picture with BitScope Mixed Signal Oscilloscopes

Turn your PC into a powerful Digital Storage Oscilloscope!

See inside your circuit with simultaneous analog, logic and spectrum displays to make tracking down those elusive real-time bugs much easier.

BitScope combines a high speed synchronized storage scope and logic analyzer with a programmable waveform generator and spectrum analyzer.

With "Smart POD" connected active probes and multiple software options you've got the perfect low cost high performance test and debug solution!

Standard 1M/20pF BNC inputs
200uV-20V/div with x10 probe
8/W select AC/DC coupling
Switchable 50ohm termination
Arbitrary Waveform Generator

BitScope Smart POD probe connector
3 logic channels, cross-triggering
Dual channel analog inputs
Async serial I/O for external control
Supports active probes

USB 2.0 or Ethernet Connectivity
Single cable to PC or switch
Compressed data transmission
Ethernet option uses UDP/IP
Internet addressable device

Expandable and Programmable
Simple ASCII Protocol
BitScope Scripting Language
Add active probes and devices
Supplies up to 500mA via POD

BitScope and your PC provide an array of Virtual Instruments

BitScope’s integrated design uses standard oscilloscope probes and a growing range of custom probes to provide functionality equal to instruments many times the price.

BitScope plugs into third party software tools and has an open API for user programming and custom data acquisition.

www.bitscope.com
Hands-on PC-based instrumentation

Guido Körber

Thanks to its ease of use, USB has become a widespread standard. Here we present a data acquisition module with eight channels, using a clever USB chip and a 12-bit A/D converter. Example programs in Delphi make it easy to use the converter in your own projects.

USB is fast, plug-and-play capable, and can supply enough power for many peripherals; these three reasons explain why this interface is displacing its predecessors in more and more applications. However, the path to using USB in your own applications is not always a smooth one. One possible approach for USB beginners is to use one of the 8051-compatible microcontrollers from Cypress, as we described in 2002 in Elektor Electronics [1, 2]. Other USB I/O and interface projects have used microcontrollers from Cypress, Microchip and TI [3, 4, 5].

In this project we employ a ready-programmed microcontroller that handles all the management tasks. The 'IO Warrior' chips from Berlin-based Code Mercenaries are a particularly simple and cost-effective way to build a USB application and a good choice for prototypes, one-off projects or small quantity production (see text box). The devices, however, only offer digital inputs and outputs, a limitation which we can nevertheless overcome by using their built-in I²C interface. Using this bus it is easy to connect all kinds of other devices, including A/D converters. In our circuit we use the MAX127, an 8-channel A/D converter with 12-bit resolution. The input range of the ADC can be switched between 0 V to 5 V, 0 V to 10 V, -5 V to +5 V and -10 V to +10 V. The internal reference voltage generator makes it easy to build a unit with reasonable accuracy; if this is not good enough, the pin-compatible MAX128 allows the use of an external voltage reference. There is little else to be said about the circuit itself (see the circuit diagram); we will concentrate more in this article on the software components used.
Reading and writing

Let us begin with the MAX127 chip itself. Communicating with it is not complicated: the control sequence always begins by writing a two-byte command which sets the channel to be converted and the input range. The result can then be read using a two-byte read command. The MAX127 and MAX128 have three address pins that allow up to eight of the devices to be connected to a single I/PC bus. For this project we are using a single chip, and so we set all the address pins to 0. This means that the chip will respond to I/PC address $50.

The MAX127 command has the format '1xxxbrpp'. The top bit is always set; 'xxx' is the number of the input channel to be converted, and 'r' (or 'RNG', for 'range') sets the input range: 0 means up to 5 V, 1 means up to 10 V. Bipolar operation is selected by flag bit 'b' (or 'BIP'): 0 stands for 0 V to 5 V or 0 V to 10 V, and 1 stands for -5 V to +5 V or -10 V to +10 V.

Finally, the 'pp' bits select the power mode, allowing the device to be put into a standby mode to reduce its current consumption. In our case we set these bits to zero. In order to convert channel 0 with an input range of ±10 V, therefore, we need to send command $B8C to I/PC address $50.

In order to read out the conversion result, two bytes have to be read from device address $51. The more significant byte is read first. Only the top 12 bits of the result are valid: it must therefore be shifted down by four places. The value can now be suitably scaled according to the settings of RNG and BIP. This is slightly more complex in the bipolar modes, as the 12-bit result is returned in signed two's complement form. Delphi, however, works with 32-bit integers and we therefore have to perform sign extension: if the highest of the 12 bits is set, the remaining 20 bits must also be set. The result is an integer value in the range -2047 to +2047.

The programming language Delphi, which we shall use to drive the converter in our applications, has already had a series devoted to it in Elektor Electronics [6]. Since not all readers will be crack Delphi hackers, we have written two example programs to help you use the devices in your own projects. If you do not already have a copy of Delphi, the Delphi 2005 PE version, which can be obtained cheaply or even for free, is recommended.

Components, Components, Components

The first Delphi example program shows how to install a new 'component' (all source code is available at http://www.elektor-electronics.co.uk). Components are a strength of Delphi: a huge number of these modules can be found on the Internet, for example at [7]. Most of these are available for free. In our case we need an HID ('human interface device') component. HIDs form a subclass of USB devices, including mice, keyboards, joysticks, and many other devices. The IO Warrior also appears as on HID class device. These components will work under Delphi 6 and Windows 98 (and under Delphi 4 and Delphi 5 with small changes to the project file).

Installation is straightforward. Copy the files to a suitable place and double-click on HidController.dpk. The Delphi IDE will appear with the project workspace for the components. Click on 'Compile' and 'Install' and the job is nearly done. The path to the component directory must now be entered into the Delphi IDE so that they can be found: this is done under 'Tools : Environment Options... : Library : Library path'. You can now immediately use the components in your own Delphi projects.

The example program is simple. A TRadioGroup is used to set the MAX127 mode, and resulting values are displayed using multiple TLabel components. Arrays of components are not directly supported by Delphi, and so we put the TLabel components for displaying the results into our own array:

```delphi
procedure TForm1.FormCreate(Sender: TObject);
begin
  // put individual label components in an array
  // so we can index into them
  Values[0] := Label1;
  Values[1] := Label2;
  Values[2] := Label3;
  Values[3] := Label4;
  Values[4] := Label5;
  Values[5] := Label6;
  Values[6] := Label7;
  Values[7] := Label8;
end;
```

Plug and play

Now we come to the TjHidDeviceController component, which enables access to the IO Warrior. This has an OnDeviceChange event which indicates when an HID class device is connected or disconnected. Helpfully, the component simulates the connection of all HIDs currently connected when the program is started. The hardest
aspect of managing HIDs is that they can be connected or disconnected at any time. A check must therefore first be made to see if the event was not triggered by the disconnection of an IO Warrior already in use; if no IO Warrior is currently in use, then a check is made to see if one is now present, as the event can also be triggered by an IO Warrior device being connected.

The variable Enabled, which controls the timer that governs the A/D conversions, is initially set to false. It is only activated when an IO Warrior device is found.

Note that since the A/D converter is written to via the IO Warrior device rather than directly, the I²C data have to be assembled into suitable data packets for the IO Warrior. More information on this can be found in the IO Warrior documentation at http://www.codemacs.com.

begin // IO Warrior found; activate I²C FillChar(Report, SizeOf(Report), 0); Report.ReportID := 501; Report.Bytes[0] := 501; I²C.WriteByte(Report, SizeOf(Report), BytesWritten); // enable read timer Kicker.Enabled := True; end else for I := Low(Values) to High(Values) do // no IO Warrior found, indicate value unknown Values[I].Caption := '??'; end;

Channel sequencing

When an IO Warrior is found its I²C function must be enabled by writing a suitable data block. The timer must also be activated to govern the reading of values from the MAX127. The timer function simply steps through all the channels of the MAX127, reading in each case two bytes over the I²C bus and suitably displaying the result (see listing in box). The timer is used to read the MAX127 every 200 ms. It is not possible to run faster than this, as the design of the IO Warrior severely limits the speed of read transactions over the I²C bus. It is therefore not really practical to build an eight-channel oscilloscope on the basis of this project.

The assembly of the command bytes for the MAX127 is explained in more detail in the listing (see box):

Report.Bytes[2] := $80 or (Parameters.ItemIndex shl 2) or (1 shl 4);
Bit-twiddling is inevitable when dealing with peripheral devices. The format of the byte is 1xxxxy00. The fixed part of this is 80 (hexadecimal). The start bit must always be set, and the power-down bits must always be zero. The channel number, selected by I, is shifted to the left by four bits and inserted into the 'xxx' bits of the byte using an 'OR' operation. RNG ('y') and BIP ('z') are handled as a two-bit quantity. The RadioGroup allows only exactly one RadioButton to be selected, giving its index starting from zero in ItemIndex. Since we have four buttons, this gives the desired two-bit quantity. This is then shifted left two places and inserted into the byte.

Care is required when reading data in bipolar mode as the 12-bit results are signed two's complement values. Conveniently, this is also the case for the integer data type, although in this case the values are 32 bits long. If the most significant of the twelve bits is a zero, the number represented is negative and sign extension is required, setting the higher 20 bits of the integer to one. The data value can then be scaled and converted to a string for display.

Adapting the program for the MAX128 involves replacing 10.0 or 5.0 respectively by the reference voltage used, or by half of that value.

Software toolbox

The second example program, which uses the file iowkit.dll from the IO Warrior SDK (freely downloadable from http://www.codemercs.com), is very similar to the first. To simplify matters the API ignores the possibility that an IO Warrior might be connected or disconnected. This moves the search for and initialisation of the IO Warrior device into FormCreate, and the read and write functions have a new syntax. The remainder of the code is identical. This example is more suitable as a base for a translation into Visual Basic 6 or Visual C++, since iowkit.dll can also be called from those programming languages, whereas the HID component is limited to use with Delphi. The important part of the example program is therefore now included in iowkit.pas. As with practically all DLLs iowkit.dll is written in C, and the API is in the form of a C header file iowkit.h. To drive the DLL iowkit.h must therefore be converted into iowkit.pas. This job needs to be done by hand, as the C header file can use all the features of the C language, including C constructions which do not have direct equivalents in Delphi. Space does not permit a full explanation here: the interested reader is referred to Rudi Velthuis’ website [8].

In general a C header file consists of simple constants, structures and function prototypes. In Delphi a DLL is directly linked, and so the function declarations must also include the DLL linkage information: this job is done in C by a LIB file, but this has no counterpart in Delphi. The majority of the API normally consists of simple numerical constants:

```c
#define IOWKIT_VENDOR_ID 0x07c0

which in Delphi becomes a simple constant:

```c
const IOWKIT_VENDOR_ID = $07c0;
```

Structures are somewhat more involved, and in the case of IO Warrior we also have to deal with a union:

```c
typedef struct _IOWKIT_REPORT
{
 UCHAR ReportID;
 union
 {
 DWORD Value;
 BYTE Bytes[4];
 }
} IOWKIT_REPORT, *P IOWKIT_REPORT;

type
P IOWKIT_REPORT = *IOWKIT_REPORT;
IOWKIT_REPORT = packed record
ReportID: Byte;
 case Boolean of
 False: (Value: DWORD);
 True: (Bytes: array [0..3] of Byte);
end;
```

IO Warrior

The IO Warrior is a Cypress CY7C63743 microcontroller, which offers a USB interface. It is programmed with code from Code Mercenaries Hard- and Software GmbH (http://www.codemercs.com). The IO Warrior 24 has 16 I/O pins, which can be individually configured as either inputs or outputs as required.

To do more sophisticated things than just toggle a couple of port pins, the IO Warrior offers 'Special Mode Functions'. Using a simple command one of these functions can be enabled on the chip, whereupon the IO Warrior takes over direct control of the I/O pins to implement the desired function. IO Warrior 24 supports the I²C bus, the SPI bus and driving an alphanumeric LCD module or a matrix of up to 8 by 32 LEDs. IO Warrior 40 also supports matrices of up to 8 by 8 switches or pushbuttons.

It is easy to use these chips with your own software. Under Windows 98 or 2000 or later a library allows simple access from many programming languages. Examples are provided in C++, Visual Basic and Delphi with the SDK (available for free download from http://www.codemercs.com). There is also support for Linux 2.6 kernels, MacOS 9, MacOS X and Java under both Windows and Linux.

Starter kits are available for both chips, which include all the necessary components as well as a few extras for initial testing on a printed circuit board with a prototyping area.
From Delphi to C and back

Fortunately in this case, Delphi does have a counterpart in the ‘variant record’. The structure name \[\text{IOWKIT\_REPORT}\] is not present in the Delphi code: in the C version it is only used in the declaration of a pointer to the structure itself. Delphi can do without this auxiliary declaration, as the declaration of the pointer to the structure \[\text{PIOWKIT\_REPORT}\] before the structure itself shows. Most of the fundamental data types used by Windows are already built in to Delphi, making this part of the translation trivial [see table].

The above example should make it clear how to declare a pointer type. Sometimes the C header file does not include the declaration of the pointer type, but it will be required in Delphi if such a pointer is ever used as a parameter to a function. It therefore makes sense always to declare corresponding pointer types.

In C the directive ‘\#pragma pack (push, 1)’ is needed to set the alignment of the structure elements. For packing into bytes Delphi uses a ‘packed record’ [see text box]. Without this, the normal alignment is to eight-byte boundaries, in the interests of compatibility with current C compilers without the need for extra commands.

Functions and procedures are handled in two parts. The declaration is placed in the interface part of the Delphi unit, while in the implementation part the actual function is delegated to the DLL.

```
ULONG IOWKIT_API IowKitRead(IOWKIT_HANDLE devHandle,
ULONG numPipe,
PC_CHAR buffer, ULONG length);
```

```
function IowKitRead(devHandle: IOWKIT_HANDLE;
numPipe: ULONG;
buffer: P_CHAR; length: ULONG): ULONG; std_call;
```

```
function IowKitRead; external 'iowkit_dll' name 'IowKitRead';
```

The ‘packed’ and ‘stdcall’ keywords

The keywords ‘packed’ and ‘stdcall’ make frequent appearances in the source code. They are often required in Delphi programs which use DLLs or the Windows API, both of which are written in C.

The keyword ‘packed’ prevents the compiler from optimising the arrangement of data in memory for speed by separating their storage locations. For example, consider a 32-bit processor. Data can be processed most quickly if each word is stored aligned to a 32-bit memory boundary. This leaves many memory locations unused if 8-bit (byte) or 16-bit quantities are stored.

If the keyword ‘packed’ appears, however, the compiler avoids this optimisation and gaps are no longer left between variables. Many DLLs expect data structures not optimised for speed. If a data structure is to be used by a program as well as by a DLL, ‘packed’ is necessary to avoid any conflicts.

The ‘stdcall’ keyword is used in conjunction with function calls, and has to do with the so-called ‘calling convention’ i.e., determining how parameters are passed to a function. Most functions in the Windows API use the ‘stdcall’ method [but not all; checking the documentation is essential]. In this case the parameters are stored from right to left on the stack by the caller (the code which is using the function). When the function or procedure is called, it is the responsibility of the callee (the code containing the called function) to ensure that the stack is tidied up.

Terrible things can happen if the caller and callee use different calling conventions. Frequently the stack will become corrupted and the program will jump to a random location and crash. It will readily be appreciated that tracking down bugs of this kind is an exceptionally tedious process.

When using externally-written DLLs it is therefore always necessary to determine which calling convention has been used and whether structures are ‘packed’ or not. This will avoid a lot of headaches when it comes to debugging the code.

### Types in C and Delphi

<table>
<thead>
<tr>
<th>C Type</th>
<th>Delphi Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>Char</td>
</tr>
<tr>
<td>wchar_t</td>
<td>WideString</td>
</tr>
<tr>
<td>unsigned char</td>
<td>Byte</td>
</tr>
<tr>
<td>short int</td>
<td>Smallint</td>
</tr>
<tr>
<td>int</td>
<td>Integer</td>
</tr>
<tr>
<td>unsigned int</td>
<td>Cardinal</td>
</tr>
<tr>
<td>float</td>
<td>Single</td>
</tr>
<tr>
<td>double</td>
<td>Double</td>
</tr>
</tbody>
</table>
**Timer procedure**

procedure TForm1.KickerTimer(Sender: TObject);
var
  I: Integer;
  Report: TI2CReport;
  BytesWritten, BytesRead: DWORD;
  N: Integer;
begin
  // just to be on the safe side
  if Assigned(TI2C) then
    // step through all MAX127 channels
    for I := 0 to 7 do
    begin
      FillChar(Report, SizeOf(Report), 0);
      Report.ReportID := $02;
      // 2 bytes with I2C start and stop
      Report.Bytes[0] := $02;
      // MAX127 address byte = ADR 0, write
      // MAX127 control byte
      // START, RNG and BIP come from the Hadi-
      // Group,
      // I = channel number, normal power mode
      (Parameters.ItemIndex shl 2) or (I shl 4);
      TI2C.WriteFile(Report, SizeOf(Report),
        BytesWritten);
      // read ACK report from IO Warrior and dis-
      // card
      TI2C.ReadFile(Report, SizeOf(Report),
        BytesRead);
    end;
end;

// extract value
// first pack the two bytes into a single
word
N := (Report.Bytes[1] shl 8) or
Report.Bytes[2];
// now shift right four places, because
// the 12 data bits sit at the top of the
16-bit field
N := N shr 4;
// convert value to volts
// according to the settings of RNG and BIP,
and display
// to two decimal places in the appropriate
label

It is easy to see from this how Delphi handles linkage with the DLL (the text box explains the use of 'stdcall'). It is worth noting that the name of the function need not necessarily agree with the name in the DLL, which allows identifier prefixes or suffixes to be made consistent. If the function names have not made available in the DLL, they can simply be exported from it, for example, 'lowK-
iRRead@16'.

The biggest problems in converting functions are pointer parameters. In contrast to C, Delphi uses 'call by reference'; in C there are only pointers. In C, then, a pointer can indicate the first element of an array or a call by reference pointer pointing to a variable. In Delphi, 'int *a' might be either 'a: Pointer', a pointer to the first element of an array, or 'var a: Integer', a simple variable passed by reference. Only by reference to the documentation can this be resolved.

References and links

[1] 'USB Driver Programming [1]',
[3] 'USB Interface',
    Elektor Electronics, September 2000, p. 44.
[4] 'USB Analogue Converter',
    Elektor Electronics, November 2003, p. 12.
[5] 'USB/PC Interface',
    Elektor Electronics, December 2004, p. 52.
[6] 'Delphi for Electronic Engineers',
    Elektor Electronics, from January 2005.
[8] www.velthuis.homepage.t-online.de/articles/
    articles-convert.html

Note: FCBs and IO Warrior ICs for this project are available through Readers Services, see SHOP pages or www.elektor-electronics.co.uk
If you have a fit looking at your monthly phone bill you might want to know who’s on the phone all the time. Also, you may want to start exercising control over which extension in your home is disabled or enabled. The Telephone Supervisor is suitable for up to three phone extensions and comes with smart Windows software that puts you (back) in control of things. One of its most salient features is the ability to log phone calls on the PC.
it is imperative to use correct interfacing techniques. Also, in most countries (including the UK) it is not allowed to connect equipment that’s not type approved to the public switched telephone network (PSTN).

In a POTS (plain old telephone system) the telephone line carries both DC and AC signals (audio) simultaneously. The DC is used to power the circuitry within the telephone during a conversation, and is derived from a large battery, of a nominal 48 V, located at the Telephone Exchange.

The landline between the Telephone Exchange and the home may be several kilometres long, and has a resistance proportional to the length of the line. The further you are away from the Exchange, the more line resistance. The telephone line is made from a pair of copper wires usually about 0.5 mm in diameter. The resistance of the line varies from 90 ohms to 180 ohms per kilometre.

When the handset is lifted, the telephone signals the Exchange by completing the loop circuit. Effectively a switch known as the hook-switch is closed. The circuit between the Exchange and the phone is known as a loop. The expressions off-hook and on-hook are used. During the off-hook condition, the current flowing in this loop is known as the loop or line current. This current will be in the order of several tens of milliamps. About 20 mA may be assumed to be a typical value. Only a very small leakage current is permitted to flow in the loop when on-hook (i.e., off line). For a nominal 50 V line voltage, the maximum leakage can be assumed to be 50 µA.

A detection circuit at the Exchange recognizes that a telephone receiver has gone off-hook when a few mA of line current are drawn from the line, and is effectively signalling the Exchange that it requires attention. The Exchange presents a dial tone to the line, and allocates a dial detection circuit, in readiness for the user to start dialing the number. When this number has been received and decoded by the exchange, it can then start to switch in the correct voice circuits to enable the call to be set up.

The above, analogue, system has been in use for almost three quarters of a century in most countries and although reliable and still in use on millions of phones around the world, it suffers from user-end disadvantages mentioned above. To solve the problems without investing in a home exchange, the Telephone Supervisor was designed.

**Telephone Supervisor**

The circuit diagram of the Telephone Supervisor is given in Figure 1. The circuit is designed around a 220 Ω series resistor and an optocoupler. If the phone extension plugged into the Telephone Supervisor is lifted off-hook then the line current it draws will cause a voltage drop across the relevant 220 Ω resistor (R1, R5 or R9). This voltage causes the LED in IC3, IC4 or IC5 (i.e., in the optoisolator) to light and turn on the associated phototransistor, which in turn switches the transistor that controls one of two inputs RA3 and RA4 on the microcontroller (a PIC 16F828A). The anti-parallel pairs of diodes D1-D2 and D3-D4 etc. prevent the voltage across the 220 Ω resistor from exceeding about 1.2 V, regardless of the line current. As mentioned in the telephone line basics, situations that would interfere with the telephone network functioning should be avoided. Type IL250 optocouplers isolate the rest of the Telephone Supervisor circuit from the telephone line, thus ensuring that a minimum number of components are effectively connected to the line.

Note: In most European countries, it is mandatory that when a device draws 20 mA from the line, that voltage across the device is less than 9 V.

**RS232 Port**

The RS232 port that’s part of our circuit can be set up for two-way (full-duplex) communications. The RS232 signals are represented by voltage levels with respect to a system common (power ground). On most computers, the RS232 port equals a COM port (for connecting mouse, modem and/or serial printer). Today, RS232 is rapidly super-
The data transmission starts with a 'start' bit, which is logic 0. Then each bit is sent down the line, one at a time. The LSB (Least Significant Bit) is sent first. A 'stop' bit (logic 1) is then appended to the signal to make up the transmission. RS232 logic levels are allowed to vary between +3 V and +25 V to signify a 'space' (logic 0) and -3 V to -25 V for a 'mark' (logic 1). Any voltage in between these regions (i.e., between +3 and -3 volts) is undefined. The RS232-level signals are taken through.

Figure 1. Three telephone sets supervised by a PIC microcontroller. The jumpers allow for regional differences between line pin assignment on the Phone and Exchange sockets.
an RS232 level converter chip type MAX232 converter them to machine understandable signal levels, i.e., having TTL swing (0 V / 5 V). The RS232 data waveform consists of combination of a start bit, data bit, and stop bit. The MAX232 is an old faithful that hardly requires further discussion. The chip includes a charge pump generating +10 V and -10 V from a 5 V power supply. It also includes two receivers and two transmitters in the same package.

**PC-PIC communications**

As an example, when the PC checks the Telephone Supervisor hardware it employs the command #CallIDCH* (Call Identification Check Hardware). The Telephone Supervisor receives the string in a binary format and the PIC-resident firmware converts it to a decimal value between 0 and 255. This value determines the subroutine to be jumped to. In this example the software will access the EEPROM memory (0x25). The string NH# and the value mentioned are converted to a decimal value which is then returned to the PC bit by bit.

The PIC receives a binary value and converts it to an ASCII string, which in the case of the terminal will be displayed as 'received'. The same principle applies to all the subroutines. The only difference is that when you change a setting, for example, disable phone #1, the software will disable the phone, update the register and only then send confirmation to the PC.

Of the control lines on the RS232 interface, DSR is used to monitor the Telephone Supervisor determining on-or-off line status and handshake, while DTR is used for handshaking purposes. The baud rate on the PC connected to the Telephone Supervisor has to be set to 56 kbps.

**What’s that PIC doing?**

The PIC in the circuit is in control of the phone enabling/disabling functions, line use detection, ‘line busy’ processing and the communications with the PC. The firmware needed to do all this is available in the form of a source code listing or an executable (object code) file. An extract of the source code listing is shown in Figure 2. For all you home PIC burners these files may be downloaded free of charge from our website as file number 050039-11.zip. In case you can use the hex object code file straight away, do note the PIC configuration bits shown in the inset. Those without access to a suitable PIC programmer may buy the ready-programmed PIC micro through our Readers Services under ref. no. 050039-41.

Six of the PIC16F828A outputs (RB0–RB5) are used to drive three bistable relays via transistors T5–T10. There are two relays in the relays and

---

**PIC source code (extract)**

```assembly
; Main Menu
Main bsf
 call PORTA, 2 ; Delay for 0.01 sec
 bcf PORTA, 2 ; Clear From
 movlw D’0’
 movwf SelMenu ; Move w to SelMenu
 incfsz SelMenu, f ; Increments specified register
 movf SelMenu, w ; Data into w
 goto contm1 ; Monitor RA0 for input
 goto contm0A
contm0 incfsz SelMenu, f ; Increments specified register
 movf SelMenu, w ; Data into w
 incfsz SelMenu, f ; Increments specified register
 movf SelMenu, w ; Data into w
contm0A btfsc PORTA, 0 ; Monitor RA0 for input
 goto contm0
 btfsc PORTA, 1
 goto contm3
contm1 btfsc PORTA, 0 ; Monitor RA0 for input
 goto contm1
 btfsc PORTA, 1
 goto contm2
contm2 btfsc PORTA, 1 ; Monitor RA1 for input
 goto contm3
contm3 btfsc PORTA, 1 ; Monitor RA1 for input
 goto contm4
contm4 incfsz SelMenu, f ; Increments specified register
 movf SelMenu, w ; Data into w
 goto NRO ; Result

; To create more menu items, copy the next four lines and paste them directly under the last menu item. You need to make a few changes.
; First change the menu number (D’2’). This number should not be smaller than 2 and should not exceed 255. This address should run concurrently with the address from your user interface on your PC.

; Read file from EEPROM
; Do not change this menu item;
; it is a fixed value on the OCX. By changing this the OCX will not function correctly.
; movf SelMenu, w ; Selected menu item
; data into w
; sublw D’5’ ; Subtract w(SelMenu)
; btfsc STATUS,2 ; Test result
; goto NRO ; if w(SelMenu) > Literal(D’5’)
; then goto menuitem
; Result
; [Read file from EEPROM]
```

---

Figure 2. Extract of the PIC source code listing.
the devices latch in both directions. Only a short pulse is needed to switch the relay on, using the one coil. A short pulse on the other coil will switch the relay off. This means that all phones that are disabled/enabled will maintain their status even with power failure. PIC port line RB6 is used in conjunction with transistor T4 to generate one of four busy tones. The functions of the other port lines may be summarized as follows:

RB7: transmit data
RA0: receive data
RA1: DTR (Data Terminal Ready)
RA2: DSR (Data Send Ready)
RA3 & RA4: monitor the inputs from transistors T1, T2 and T3; these are switched by optocouplers IC3, IC4 and IC5 as explained above.

To prevent exceeding the ring equivalent number allowed for your telephone line, it is advisable to connect two phones and a modem to the Telephone Supervisor. If you want to connect three phones, you will have to physically disconnect one of the phones ringer.

**PC Software: LCM First Server**

The software to use on the PC is called **LCM First Server v. 1.1** where LCM stands for **Line Current Monitor**, the original, 'techy', title of this project. The PC software comes on a CD-ROM with order code 050039-81, which is available through Readers Services. The operation of the program is explained in great detail in the associated **Software Guide**, a professionally styled and copiously illustrated 7-page MS Word document that’s available for free downloading as file number 050039-12. A compilation screenshot showing the Telephone Supervisor software in action in various windows and sub-menus appears in **Figure 3**.

The Telephone Supervisor board must be connected to the PC using a **non-crossed RS232 cable**.

**Building it**

The project is not at all difficult to build if you use the carefully designed printed circuit board shown in **Figure 4** and the information in the **parts list**. Only conventional leaded parts are used, no SMD parts to struggle with or lose to mum's vacuum cleaner.

The board is single sided and contains two wire links which must be fitted first on penalty of creating hard to find hardware errors, emails to the editor and unnecessary postings in our online Forum. As you can see from the copper track layout, the 'microcontroller area' of the board has additional

![Figure 3. The LCM First Server software in action on the PC.](Image)
There are just two wire links to fit on the board. 

Provided you apply no more than about 12 V DC to the supply input (on two solder pins), the TO220-style 7809 voltage regulator, IC7, will not run particularly hot so it may be mounted without a heatsink. Mounting an M3 nut between its metal tab and the board surface makes for neat, secure and exactly horizontal fitting of this TO220 device, with its three terminals bent at

<table>
<thead>
<tr>
<th>COMPONENTS LIST</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Resistors:</strong></td>
</tr>
<tr>
<td>R1, R3, R5, R7, R9, R11 = 220Ω</td>
</tr>
<tr>
<td>R2, R6, R10 = 1kΩ</td>
</tr>
<tr>
<td>R4, R8, R12, R13 = 47kΩ</td>
</tr>
<tr>
<td>R14 = 330Ω</td>
</tr>
<tr>
<td>R15, R22 = 10kΩ</td>
</tr>
<tr>
<td>R23, R24, R25 = 22kΩ</td>
</tr>
<tr>
<td>R26 = 1kΩ</td>
</tr>
<tr>
<td><strong>Capacitors:</strong></td>
</tr>
<tr>
<td>C1, C11 = 100nF (C1 5mm lead pitch)</td>
</tr>
<tr>
<td>C2, C5 = 220μF 16V radial</td>
</tr>
<tr>
<td>C3 = 22nF, lead pitch 5mm</td>
</tr>
<tr>
<td>C4, C7, C10 = 4μF 63V radial</td>
</tr>
<tr>
<td><strong>Semiconductors:</strong></td>
</tr>
<tr>
<td>D1-D22 = 1N4148</td>
</tr>
<tr>
<td>D23 = LED, low current</td>
</tr>
<tr>
<td>D24 = 1N4007</td>
</tr>
<tr>
<td>T1-T3 = BC207B</td>
</tr>
<tr>
<td>T4 = BC549C or BC550C</td>
</tr>
<tr>
<td>T5-T10 = BC237B</td>
</tr>
<tr>
<td>IC1 = PIC16F628-A/P, programmed, order code 050039-41*</td>
</tr>
<tr>
<td>IC2 = MAX232</td>
</tr>
<tr>
<td>IC3, IC4, IC5 = 2N2222 (H11AA4)</td>
</tr>
<tr>
<td>IC6 = 78L05</td>
</tr>
<tr>
<td>IC7 = 7809</td>
</tr>
<tr>
<td><strong>Miscellaneous:</strong></td>
</tr>
<tr>
<td>JP1, JP16 = 2-way pinheader and 8 jumpers</td>
</tr>
<tr>
<td>K1-K4 = RJ11 PCB mount socket</td>
</tr>
<tr>
<td>K5 = 9-way sub-D socket (female), angled pins, PCB mount</td>
</tr>
<tr>
<td>X1 = not fitted, see text</td>
</tr>
<tr>
<td>RE1, RE2, RE3 = 12V PCB relay, bistable, two energising solenoids 2 x 400mA, two changeover contacts, e.g., DS2E-M2.12VJ (Schurich # 407220; <a href="http://www.schurich.de">www.schurich.de</a>)</td>
</tr>
<tr>
<td>2 wire links</td>
</tr>
<tr>
<td>CD-ROM, LCD First Server 1.1, order code 050039-81*</td>
</tr>
<tr>
<td>PIC source &amp; hex code files, file 050039-41* Downloadable PCB, ref. 050039-1 from The PCBShop</td>
</tr>
<tr>
<td><strong>Inductors:</strong></td>
</tr>
<tr>
<td>L1 = 47μH</td>
</tr>
</tbody>
</table>

* See Elektor SHOP pages or www.elektor-electronics.co.uk
an angle of 90 degrees.
All electrolytic caps on the board are radial types hence have to be fitted vertically. Care should be taken to get these devices correctly polarised on the board, so make sure you know where the positive and negative leads (1) are and (2) have to go on the board. The same goes for the diodes, in respect of their cathode and anode terminals. Sure, the ICs are also polarised components so don’t insert them the wrong way around.
Position X1 on the board remains empty. Initially this was for a 4-MHz ceramic resonator device. An adaptation of the PIC software however allowed for the PIC’s internal 4 MHz clock to be used.
All four RJ11 phone sockets are fitted in a neat row at the board edge. Incidentally, we recommend using sockets for all integrated circuits including the optocouplers.
Jumper clusters JP1-JP4, JP5-JP8 and JP9-JP12 have to be set in accordance with the pin/signal assignment of the RJ11 connectors to the phones. Unfortunately the assignment of the phone line signals (here, called ‘a’ and ‘b’) to pins on the socket differs from country to country hence may take some figuring out. The same goes for the ‘Exchange’ socket, K4. As a matter of course, only one jumper may be fitted for the ‘a’ line, and one for the ‘b’ line, so JP4 and JP2, for example, are mutually exclusive. For the sake of convenience the pin numbers of the RJ11 sockets are printed on the PCB overlay. Our prototype worked with four jumpers installed in position ‘3’ and the other four in position ‘4’ (line ‘b’ on RJ11 pin 3; line ‘a’; on pin 4).

The finished board should be given a thorough visual inspection before powering it up for the first time. We recommend using the LCM Terminal utility from the LCM First Server software to check if the hardware and PC connection are functional. When this is successful, the PC software can be used to download the default configuration into the PIC on the board. This functionality is explained and illustrated in the Software Guide.

**Note:** this circuit is not type approved to BABT standards and in the UK may not be connected to the public switched telephone network (PSTN).

Anthonie Botha – LCM050039@hotmail.com

---

**Figure 5.** Finished board ready for mounting into an ABS enclosure.

**PIC configuration bits**
Processor: PIC16F628-20/P
File: 050039-41.hex

<table>
<thead>
<tr>
<th>BIT</th>
<th>Options:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F OSC0:</td>
</tr>
<tr>
<td>1</td>
<td>F OSC1:</td>
</tr>
<tr>
<td>2</td>
<td>WDTE</td>
</tr>
<tr>
<td>3</td>
<td>PWRT/</td>
</tr>
<tr>
<td>4</td>
<td>F OSC2</td>
</tr>
<tr>
<td>5</td>
<td>MCLRE</td>
</tr>
<tr>
<td>6</td>
<td>BOREN</td>
</tr>
<tr>
<td>7</td>
<td>LVP</td>
</tr>
<tr>
<td>8</td>
<td>CPD/</td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>CP/</td>
</tr>
</tbody>
</table>

In case of reprogramming EEPROM memory must be cleared!
New B² Spice V5
Our hottest Spice ever

New B² Spice Version 5 has all the power and functions you expect from a professional Spice package, but without the high cost:

- Real design flexibility with over 30,000 models, unlimited circuit size and a huge range of new virtual instruments
- New Circuit Wizard saves time by auto-generating many designs for you
- Sweep all parameters for any component and simulation type with the powerful new Scenario Editor
- Live Circuit feature allows values to be adjusted while simulations are running, displaying the results in real time

Professional standard Spice simulation for just £229 + VAT. Plus educational and multi-user licence discounts available and FREE comprehensive telephone technical support. Try the full version completely free for 30 days.

www.spice-software.com
Tel: 01603 872331
Christmas Gifts

With Christmas almost upon us it's that time of the year again to find or make original presents for friends and relatives. For your inspiration we found twenty or so gifts that are sure to delight any electronics enthusiast, including you, as the recipient, of course! For subtle guidance of your friends in their choice of Christmas presents (for you), pass this issue of Elektor around.

Handy 3-in-1 lab aid
For anyone with too little space in the home lab or workshop, Velleman's LAB1 may present a solution. LAB1 packs an adjustable powers supply, a multimeter and a temperature-controlled soldering station in a single enclosure. The manufacturer's design is well thought out as two separate transformers are available for the power supply and the solder iron, while the multimeter is battery powered for proper electrical isolation.

Programmable LED Badge
This programmable LED badge can act not only as a name badge but also as an eye-catcher in discos and pubs. Up to 50 characters stored in memory are displayed on a 21x7 LED display. The unit is powered by a Lithium button cell.

E-blocks
The E-blocks modular construction system allows beginners as well as experienced engineers to design and build microcontroller circuits faster than ever before. The core of the system is a USB Multiprogrammer, a board that's suitable for a wide range of microcontrollers and ready for connection to all kinds of extension and application boards. Programming is modular, too, using pictograms and ready-to-use chunks of software.

Solder starter kit
A nice starter kit for electronics hobbyists, containing a 25-watt solder iron, solder tin, a solder stand, pliers and two mini kits, one for flashing LEDs and one for a LED sound to light unit. Start soldering straight away and learn the tricks.

See at: www.vellemann.be

See at: www.rockingstone.nl

See at: www.elektor-electronics.co.uk

See at: www.vellemann.be

See at: www.thinkgeek.com
gadgets, gizmos and wannahaves

**LEDs for Maglite flashlight**
USA firm Terralux specializes in replacement lamps for the world famous ultra-rugged Maglite flashlights. However, Terralux actually supplies white LEDs, with full mechanical and electrical compatibility with Maglite's original lamps. The LEDs are mounted on a mini board that also holds the drive electronics. Versions are available for several Maglite flashlights and lights strengths.

See at: www.terraluxcorp.com

**Polarity Checker**
Using PoleChecker from audio guru Van Den Hul you not only detect the presence of direct and alternating voltages in a safe way, you can also connect all equipment in your audio system for the best possible sound reproduction. The tester is batteryless and even has an LCD screen providing an indication of the value of the voltage measured.

See at: www.vandenhel.com

**Light-emitting Sticks**
Okay, these Tritium Tracers have nothing to do with electronics per se, but they may turn out to be useful 'must-haves' in some occasions. The remarkable thing about these sticks is that they emit light over a period of 10 (that's right, ten) years without a battery! These are opaque tubes with a fluorescent layer inside, filled with boron-silicate and then thermally sealed using a laser. Available in different colours, they look great on your key ring.

See at: www.smart-elements.com

**Shocking Roulette**
If you are bored with charades or monopoly and want to play a different game under the Christmas tree this year you might consider Shocking Roulette. We're talking about the Russian variant involving the gun with just one bullet. The device has four holes for each of the contestants to insert a finger in. After pressing a button, the LEDs with the contestants start to flash and after a while one LED remains on. The 'lucky winner' gets an electric jolt! Anyone for tennis?

See at: www.thegadgetcompany.nl

**Voice Synthesizer**
The SP03 board is a small PCB with a complete voice synthesizer on it, using the WTS701EM/T from Winbond as the core device. By way of an RS232 interface you send ASCII text to the board. The text is reproduced by a voice from a small built-in loudspeaker. The board measures just 4x4 cm, runs off a 5-V supply and is easily added to an existing microcontroller board.

See at: www.rockingstone.nl

**Cold Fusion**
Excellent for small repair jobs in awkward places, this cordless solder iron from Conrad Electronics. The device is powered by four penlight batteries. The crux is in the two-part tip: it's made of a conductive material called Athalite. The tip remains cold until you place it onto a conductive surface, for example, a solder spot on a PCB. A hefty current then starts to flow, rapidly heating the solder spot.

See at: www.conrad.nl

**Manual Power for Mobile Phone**
Who remembers PowerBall, a ball with an internal flywheel intended as a fitness trainer for hand and wrist muscles? Some users actually became addicted to PowerBall. Now, we found a successor: Manual Power. This too, is a gyroscope you have to keep spinning. The new model has a built-in generator allowing you, while juggling the device, to generate electrical energy for the internal flashlight, or to charge your mobile phone battery.

See at: www.gadgetzona.nl
**Vintage Receiver for Mobiles**
Not terribly practical, but still a good gimmick: a vintage telephone receiver you can connect to a mobile phone. A far cry from the latest Bluetooth headset your friends are flashing! Just imagine the amazement of passers-by at the bus station seeing you talk into this vintage receiver. The receiver is a virtual copy of the Western Electric model 500 telephone set and may be connected to the 2.5-mm jack socket available on most modern mobiles.

Seen at: www.thinkgeek.com

**Mini DAB Receiver**
The Philips DA 1000 is a portable DAB receiver weighing in at less than 100 grams. It has a backlight for a brightly illuminated display and a joystick to control it all. DAB (digital audio broadcasting) is the digital alternative to analogue VHF FM broadcasts. The system has proved to supply excellent sound quality. DAB was rolled out a few years ago in the UK and now has nationwide coverage.

Seen at: www.mp3lin.co.uk

**Check your own Car**
All modern cars have an OBD-2 connector supplying all kinds of data when suitably "provoked". The system also allows certain vehicle data to be changed (within limits) which is interesting if youistration. Edkent's very own OBD-2 Analyser comes as a kit of parts. You connect it between a PC or laptop and the OBD-2 socket in your car. Next, you're allowed a glimpse at the car's internal electronics.

Seen at: www.elektor-electronics.co.uk

**Floating Globe**
(Very) long-time Elektor readers may remember a circuit published in the 1970s that made a metal globe (of the pencil sharpener type) "float" inside a magnetic field. Such a gadget is now available commercially and the floating globe still causes "awe and wonder" among the uninitiated. The model we saw has an impressive diameter of about 18 cm, which is sure to impress your Christmas party guests.

www.gadgeteniverse.com

**Portable DRM Receiver**
The digital radio system called DRM (for Digital Radio Mondiale) rocketed into popularity among our readers mainly through the Elektor DIY DRM receiver published in March 2004. It does, however, require a PC to work. One of the first commercial all-portable DRM receivers is now offered by Mayah Communications. The radio contains a DSP module for the decoding of DRM signals and doubles as an analogue receiver. At a price, however, of about 350 pounds!

Seen at: www.mayah.com

**MindReader**
The 20Q MindReader is a clever toy that reads your mind after you have answered 20 questions. You may think that's not possible, but thanks to a smart algorithm this gadget is capable — in most cases — of guessing what (object) you are thinking of. That is... well anyway, try it and marvel at the results!

Seen at: www.gadgethouse.nl

**Bright Feet Slippers**
This may well be the ultimate gift for the really spoiled electronics enthusiast; feet slippers with built-in lighting. Never get lost again in the dark or stumble around waking up everybody on your way at night to the fridge or workshop. Available in several sizes, this novel footwear is pretty ingenious. A pressure sensor detects when you put on the slippers, while a timer provides a courtesy light when you take them off again.
The slippers are powered by two Lithium batteries you can easily replace.

Seen at: www.brightfeetslippers.com
VW Microbus plays LP records

Certainly one of the hottest items in this overview, this miniature Volkswagen bus that plays your vinyl records. Put the bus on the LP and it will drive around playing the record through its built-in loudspeaker. The vehicle is powered by a 9-V battery. A warning, thought: The supplier calls the product 'Vinyl killer record playing VW van', so we have our doubts about what's left of the precious record when the bus is at the end of its groovy journey.

Seen at: www.htf.com

High-end at 30 dollars

At first blush the Sonic T-amp does not appear much more than a plastic case with a tripath switching amplifier module inside. Judging from reviews however (www.tnt-audio.com/ampli/t-amp_e.html) the small amplifier excels in sound reproduction, and has been compared to amplifiers costing upwards of 1 kdeliver. The thing runs off a battery pack — a mains adapter is available as an option.

Seen at: www.sti-technologies.com

Universal USB/HID Cable

Connecting a hard disk externally to a computer can be very handy, for example, when you need a one-time backup device. Sure, external hard disks with USB or FireWire connectivity are nothing new (nor are sleek cases for them), but why not use that old hard disk gathering dust? The advantage of this USB2.0-to-IDE cable is that the IDE side has two connectors, so 2.5-inch as well as 3.5-inch hard drives may be hooked up.

Seen at: www.usbgeek.com

LED Replacement Lamps

The traditional lamps in our homes are gradually phased out and replaced by other light sources. Especially white LEDs are on the rise. Conrad supplies nifty replacement lamps for the well-known halogen spotlights at home, in 230-V and low-voltage versions. They have the same shape as halogen lamps and contain an array of 18 white LEDs. Also available in several colours.

Seen at: www.conrad.nl

Alternative gifts

Every year the same gifts: a calendar, a pen (with inscription!) or a bottle of wine. Nothing wrong with these, of course, but far from original. If, after browsing these pages, you still haven't found anything to your liking and also lack the inspiration for other ideas, try something completely different. What about a nice wooden salad bowl with matching cutlery, possibly complemented by an oil-and-vinegar dressing set? Not just practical, but healthy, too! A nice set of candle holders is sure to create the right ambient lighting during the festive season.

If you think that's real corny, why not surprise your friends or beloved ones with tickets for a rock concert, a karting event, a balloon trip or an anti-skid course? Success guaranteed, but a tad more expensive than your ordinary Christmas presents.

Weather Station with PC Link

Weather stations for use in the living room come in many shapes and sizes, from small to large and from dirt cheap to astronomically priced. The crux of this one is the complete outfit (it comes with three outdoor sensors) and the RS232 link to the computer. Using the supplied software you can view the weather changes on your PC screen. A version with a touch screen is also available.

Seen at: www.weershop.be
The dark days of winter are on their way again, so it's time for some cheerful lighting for the Festive Season. The author picked up six Christmas light strings for a song and reworked them a bit. The result can be used for many sorts of occasions other than Christmas, so it can improve the ambience in your room for the rest of the year as well.

The Elektor Electronics staff really enjoyed this idea and the implementation. Jeroen managed to create attractive mood lighting using very limited resources and even less money. Our contribution is a schematic diagram for a mains controller and a few tips that may help simplify the construction. For completeness, we also describe how the circuit works.

You will need the following components for his project (see Figure 1):

...by using this bit of hardware. Most of you probably don't have any idea what this is, so I'll just tell you: this is a microcontroller-driven, computer-interfaced, triac-switched, electrically isolated, six-channel phase-control dimmer. There!

That means you can attach six different light fixtures to it, and each of them can be individually dimmed using a computer. The six Christmas light strings are a perfect match.

Hey, they really work! You can see the five colours clearly here. The problem with this sort of coloured lights is... well, that they're just too colourful. It seems too American to me, too garish. That's certainly not what we want. But don't worry, that's easy to fix.

Of course, this is all at 230-V mains potential, so it must be fitted into an enclosure. Fortunately, these days you can get a cheap enclosure for free by devouring, like I did, the contents of a tub of custard. (FYI: it was chocolate custard.)
Light Strings
PC-controlled mood lighting

- a microcontroller (Atmel AT90S2313)
- a 5-V power supply for the microcontroller
- a 12-V power supply for the triac drive circuitry
- an interface to a serial port

The author used a data cable for a Siemens C35 mobile phone for the PC interface, but a MAX232 can easily be integrated into the circuit diagram (see Figure 3).

The author also used several other ‘exotic’ components. That simply reflects what he had on hand. It’s also better to use optotriacs instead of optocouplers. A suitable choice is the Sharp S202511 (see Figure 3). That also allows TR2 to be omitted, as the 12-V supply for the optocouplers is no longer necessary. The second winding of TR1 can then be used to power IC9. The microcontroller is also a bit on the old side. If you can’t find it, you can also use the ATtiny2313, which is pin- and code-compatible with the AT90S. Make sure the fuse declarations are correct when you program it: FUSE H=0xdf, FUSE L=0xcf.

The dimmer portion of the circuit is quite simple. There is a transformer for the 5-V supply, and a second transformer for the 12-V supply and zero-crossing detector. The zero-crossing detector allows the microcontroller to operate synchronized to
the 50-Hz mains voltage. As already mentioned, one of the transformers and the 12-V supply can be omitted if you use optotriacs.

The microcontroller drives the triacs. When the microcontroller applies a pulse to an optocoupler input, the triac conducts until the mains voltage passes through zero.

A six-channel phase-control dimmer is implemented in the microcontroller software. It can be controlled via the serial port. The microcontroller causes a portion of the sinusoidal mains waveform, which is divided into 200 adjustable steps, to be applied to a string of Christmas lamps via a triac. That allows each string to be dimmed with a resolution of 200 steps.

The source code for the microcontroller and the accompanying PC program can be downloaded from the Elektor Electronics website (http://www.elektor-electronics.co.uk/).

The software for the PC amounts to a simple controller for a six-channel dimmer. The only thing you have to do, besides adjusting the six dimmer sliders, is to configure the Com port. There aren’t any bells and whistles.

Communication between the PC and the microcontroller is quite simple. Configure the port for 19,200 baud, no parity, 8 data bits, and 1 stop bit. Two bytes are transmitted each time a dimmer value is changed. The first byte begins with a ‘1’, followed by six bits that specify which channel (which light string) is to be changed. The final bit is the most significant bit of the new dimmer value. The second byte starts with ‘0’, followed by the remainder of the dimmer value. This can be shown schematically as follows:

Byte 1: 1 c5 c4 c3 c2 c1 c0 d7
Byte 2: 0 d6 d5 d4 d3 d2 d1 d0
As shown in Figure 2, you have to connect DTR to DSR (pin 4 to pin 6) when you make the serial interface cable. The same applies to RTS and CTS (pins 7 and 8). That provides the handshaking necessary for proper data transport. Use a 1:1 data cable if you need to extend the cable.

The MAX232 is powered by tapping off its supply voltage from the DSR and RTS lines (pins 6 and 7). If you fit diodes to these lines, they can do an excellent job of powering a 7805 voltage regulator IC.

The usual safety measures are applicable to this circuit, due to the fact that it is powered directly from the 230-V mains. A proper enclosure is thus not an unnecessary luxury. Please consult the instructions on the 'Electrical Safety' page published regularly in Elektor Electronics. We cannot endorse using an empty custard tub (as used by the author) as a 'zero-cost' enclosure.

Figure 3. The optocoupler-triac combination can be replaced by an optotriac as shown here. No snubber network is necessary if you use the S202511.

Please note: Readers Circuits have not been tested or postengineered by the Elektor Electronics design laboratory.

About the author

Jeroen Domburg is a student of Electrical Engineering at Saxion Hogeschool in Enschede (Netherlands). He is an enthusiastic hobbyist and interested in microcontrollers, electronics and computers. Jeroen designs illuminated news displays as a part-time job, and he is presently working on a project involving networked modules fitted with individual microcontrollers.

Website: http://sprite.student.utwente.nl/-jeroen/kerstlampjes_art.html
Save Energy by Reverse Engineering Remote switching with mini R/C cars

Bernd Oehlerking

Miniature radio controlled cars are great fun for the armchair rally enthusiast but once the novelty has worn off or the car suffers a mechanical failure any true electronics enthusiast is more likely to reach for their smallest size Phillips screwdriver rather than toss the car straight into the dustbin. This design shows how just such a model R/C system can be adapted to act as a (W)LAN Router ‘watchdog’ to switch the Router on or off depending whether any networked PC’s are present.

Radio controlled models are getting smaller and cheaper; diminutive pocket-sized radio controlled cars can nowadays be found for as little as 5 to 10 pounds (probably less on Ebay). Take a closer look under the bonnet of these matchbox minis and you will be surprised at what you get for your money. A table at the end of this article lists the most important parts.

With the help of a little ‘reverse engineering’ and a few additional components the radio control link can be pressed into service in a completely different field: wireless networked PCs usually connect to the Internet via a Router. For convenience the Router will be permanently switched on so that any PC has immediate wireless access to the Internet when required. The circuit suggested here uses a receiver circuit taken from a radio controlled car system to switch the Router on only when there is at least one PC (fitted with an R/C transmitter) switched on and in range of the network. The circuit draws less current than a Router so in small networks there will be a worthwhile energy saving.

Reverse Engineering

RE (Reverse engineering) is the process of examining finished equipment to work out how and why the unit was designed in such a way. The aim of the exercise is usually to reproduce (improve/adapt) the design while...
avoiding any possible copyright infringements (thanks to www.wikipedia.org for help with the definition). This is in fact precisely the approach we used to investigate the workings of the model cars. The R/C system has two channels, forward/reverse commands on channel 1 and left/right on channel 2. Transmission occurs on allocated channels either in the 27 MHz or 40 MHz ISM (Industrial, Scientific and Medical) band. The transmitter has four miniature pushbuttons on the PCB which allow for forward, reverse, left or right commands. Two AAA size batteries power the transmitter while the car itself runs on the energy stored in a small NiCd cell which requires topping-up from a charging unit before each race. The nominal cell voltage is 1.2 V with a capacity of 60 mAh and this stores enough energy for around one minute of activity. Steering is achieved with the help of two powerful Neodymium magnets mounted in the front of the car. An electrical coil positioned between the magnets exerts a pushing or pulling force on the magnets depending on the direction of current through the coil and this will have the effect of steering the car hard left or hard right. When there are no steering signals received, current through the coil is zero and a centring spring ensures the wheels return to the straight ahead position.

With this knowledge of the remote control unit’s operation the transmitter can be adapted to send out RF signal pulses periodically when a network (LAN or WLAN) connected PC is switched on. The remote control receiver can then be used to switch the network Router. As long as it receives an RF pulse say every two minutes, it will know there is at least one PC in range and the Router will remain switched on. It functions as a sort of watchdog: keeping the Router switched on whenever at least one PC is in range and then switching it off when no PCs are detected.

**The transmitter**

The transmitter PCB is shown in Figure 1. The upper right-hand push but-
The 5 V supply for the CMOS NE555 is sourced from the PC power supply. A 'Y' cable can be used to connect directly to the power supply flying leads or if you would prefer not to open up the computer a keyboard adapter connector can be used to tap into the 5 V supply from the PC keyboard socket. LED D1 reduces the transmitter PCB supply voltage to around 3.3 V. When the PC is switched on capacitor C2 produces a reset pulse on pin 4 of the IC. The output on Pin3 will go low and enable the transmitter briefly. The receiver will detect the resulting RF pulse and switch on the Router (assuming it is not already switched on). It may be necessary to increase the value of C2 if this first RF pulse is too short to switch on the Router. The NE555 is configured as an astable multivibrator so it will repeatedly pulse the transmitter on and off as long as it is powered up and the voltage on C2 has risen above the threshold voltage. The values of R1, R2 and C1 control the astable timing; a value of 1 MΩ for R1 will produce an output high (transmitter inactive) time of more than 5 minutes with a low time (transmitter on) of approximately 1.5 s. The off period can be reduced to around 30 s by connecting a 100 kΩ resistor in parallel to R1. Ensure that the receiver time constant is longer than the transmitter time constant otherwise the Router will be continually cycled on and off.

The control circuit with the NE555 is built on a small piece of perforated board and fitted into the transmitter's battery compartment (Figure 3).

The receiver
The entire receiver circuit is fitted into the enclosure of a mechanical time switch. The time switch typically uses a single pole switch to interrupt the mains connection to its in-built mains socket. The receiver circuit in Figure 4

Figure 3. The additional circuitry fits into the transmitter battery compartment.

Figure 4. The modified receiver circuit showing the model car receiver module.
uses a relay contact in parallel to the time switch contact. It is also possible to mount the receiver in any suitably sized plastic enclosure with a mains plug and socket.

A small mains transformer together with a bridge rectifier and 5 V regulator provide the supply for the monoflop configured NE555. The green LED is connected in series with the 5 V supply and provides a voltage drop so that approximately 3.3 V is available to power the receiver module (Figure 5). Before any modifications are attempted on the mains time switch it is **vital to read the warning at the end of the article and be aware of the dangers**!

Once the unit is powered up the 470 \( \mu \)F capacitor will start to charge up to the supply voltage via the 500 k\( \Omega \) resistor. As we mentioned before, this capacitor charging time must be greater than the transmission pulse interval of the transmitter. When a pulse from a transmitter is detected the ‘M’ output of the receiver will be switched to ground. The M connection was originally used to switch the electric motor ground return but in the new application it provides a discharge path for the capacitor via the 560 \( \Omega \) resistor. This produces a high level on the output (pin 3) of the NE555 so that the relay pulls in and switches the Router on. Without any pulses received form any PC’s the capacitor will charge-up towards 5 V. When the voltage across the capacitor reaches 2/3 of the 5 V supply voltage the relay contacts are released and power to the external equipment (the Router) will be interrupted. Supply current to the receiver flows through the LED and each time a pulse is received the increase in current causes the LED to light a little brighter and give a visual indication of a received pulse.

**Warning! High Voltage**

The transformer, mains fuse, relay contacts and connections to the mains wiring (Figure 4) are carrying lethal voltages. It is imperative that they are enclosed within a properly insulated enclosure and that all safety guidelines are adhered to. Please refer to the Electrical Safety page printed regularly in this magazine.

**Practical tip**

Before you devote too much time on this project first build the transmitter and test the system to make sure it has sufficient range to cover your PC network with the receiver powered from 3.5 V. Switch the transmitter to forward and take the receiver around the area checking that the motor keeps turning. If the range is sufficient check the two motor connections to see which is switched to ground.

---

**List of components**

<table>
<thead>
<tr>
<th>Model car</th>
<th>Remote control transmitter</th>
<th>Charger unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receiver PCB</td>
<td>Transmitter PCB,</td>
<td>Charger PCB</td>
</tr>
<tr>
<td>1.2 V/60 mAh NiCd cell</td>
<td>Telescopic aerial</td>
<td>3 x 1.5 V batteries</td>
</tr>
<tr>
<td>Small DC motor</td>
<td>2 x 1.5 V batteries</td>
<td>On/Off Switch</td>
</tr>
<tr>
<td>Coll (steering)</td>
<td>Screws</td>
<td>Enclosure</td>
</tr>
<tr>
<td>2 Neodymium Magnets</td>
<td>Enclosure with battery compartment</td>
<td></td>
</tr>
<tr>
<td>1 rear axle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 front wheels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bodywork</td>
<td></td>
<td></td>
</tr>
<tr>
<td>screws</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
E-blocks and Flowcode

Programming, simulating, and testing have never been this easy!

Evelien Snel & David Daamen

Last month we introduced you to E-blocks. We’ll now take a closer look at Flowcode, the programming software that complements the modular design of E-blocks perfectly. Even if you don’t yet have any E-blocks it is still worthwhile to read further. This software happens to be suitable for other PIC designs as well!
It is of course a bit difficult to describe a programming tool if you don’t have access to the hardware. Although this article is based around E-blocks, Flowcode can also be used to program other hardware that uses PIC controllers. But why should you? When you use Flowcode along with E-blocks you’ll find that you save yourself a large amount of development time. A large number of E-blocks come with a fully programmed macro for use with this programming software. This means that you no longer need to have a detailed knowledge of how to interface these peripherals, so you can concentrate on the main program.

Go with the flow

Flowcode is a program that makes it easy to write microcontroller applications, simply by dragging icons onto a program flowchart. These programs can drive various peripherals (such as LEDs and LCDs) that are connected to the microcontroller. The Flowcode environment consists of a workspace containing flowchart windows, several toolboxes with icons for the flowchart and external components, three windows where the status of the microcontroller and the connected components can be inspected, and two windows that display the variables and macro calls during the simulation (Figure 1).

To create a new program you should follow these steps:

1. Open a new flowchart, then specify the type of microcontroller that the software should work with.

2. Drag icons from the toolbox onto the flowchart to give the program a body.

3. Add peripherals to the project by clicking on the icons on the components toolbox. Adapt their properties and specify how they’re connected to the controller.

4. Simulate the application to check that it works as expected.

5. Transfer the application to the microcontroller. The application is first automatically translated into C, then into assembler code and finally into object code, which is then used to program the controller.

Macros make life easier

Macros are a powerful element of Flowcode. These are parts of the program that are represented in the flowchart as a single block. In reality, each macro is a miniature flowchart on its own. The use of macros offers many advantages:

- Sections of programs that appear more than once only have to be typed in once.
- The flowchart is easier to follow because many of the details are hidden inside macros. The flowchart then only shows the main program tasks.
- Macros can be saved separately (exported) and reused at a later stage in another program by importing them.

Numerous examples

Flowcode comes complete with a large number of examples (tutorials). Let’s take a look at tutorial 20, a counter with a multiplexed 4-digit 7-segment-display. The display is driven via two I/O ports of the PIC. This example is interesting because it shows how easy it is to drive such
a display with Flowcode, despite the fact that we’re dealing with a total of 32 light-emitting segments. The flowchart for this program is shown in Figure 2. The program starts with five ‘calculations’, where the five variables we use in the program are given initial values. Then the interrupt routine is installed and the program enters an endless loop, where the 7-segment displays are driven sequentially. In this loop the value to be displayed is incremented at regular intervals. The program branch begins with a ‘condition’. When the value of the variable COUNT is greater than or equal to 25 the right-hand branch is taken, otherwise the program goes straight on. In the right-hand branch the value of the variable COUNT is reset to 0 and then the macro UPDATE_VALUES is called. This macro increments the displayed count by one by adjusting the variables SEG0 to SEG3. The two branches then meet up again and the four digits are lit up one after the other, again using a macro. We have then reached the end of the loop and the microcontroller jumps back to the start.

**Missing Code?**
The observant reader will now wonder if something isn’t missing from this program, since it isn’t clear how the value of COUNT can ever become greater than 25. COUNT has been set to 0 and from then on never appears to change! Incrementing the value of COUNT is the task of the interrupt routine in the program. This can be found from the menu Macro>Editor/Delete. When this menu is selected a window opens with the names of the macros used in the program. In this case we’re interested in the macro INTERRUPT_TMRO. When we select this from the list and click on Edit another flowchart is displayed (see Figure 3). And here is the piece of code that appeared to be missing! The only task of this interrupt routine is to increment the variable COUNT.

We can take a look at the other macros in the same way. The flowchart for the macro UPDATE_VALUES is shown in Figure 4. It shows that a lot of work is required to increase the values of SEG0 to SEG3. First the value of SEG0 (which is the least significant digit of the displayed value) is incremented by 1. This is followed by a conditional branch. As long as SEG0 is less than 10 nothing else has to be done. In this case the program carries straight on. When SEG0 is equal to 10 it is reset to 0 and SEG1 (which is the second digit) has to be incremented. SEG2 and SEG3 are eventually incremented in the same way. The macro ShowDigit is responsible for driving the actual segments of the display, but this pre-programmed macro cannot be inspected by the user.

**Connecting and programming the PIC**
Does the simulation work? When you use E-blocks you are only a few steps away from a working prototype. The E-block with the 7-segment displays (refer to the Elektor website for more information) can be connected directly to the E-blocks Multiprogrammer. Remember to connect a supply wire between V+ OUT on the processor board and V+ on the display board.

Most of the tutorials are created for use with 16F84/16F88 type PICs, but you could also use a PIC 16F877 with the Multiprogrammer board, for example. Before you can send the program to the PIC you have to ensure that the Flowcode is aware of the type of target processor. This is done using the three top options from the PIC menu of the program.

Once everything has been set up correctly all you need to do is click on PIC>Compile to PIC from the menu. The program is then translated into C, converted into ASM code, transformed into object code, and finally converted into HEX code, which is sent to the microcontroller via the USB connection. Once the code has been transferred, the PIC will immediately start executing it: the counter on the 7-segment display starts to increment!

More information and the complete E-blocks catalogue can be found at: http://www.elektor-electronics.co.uk/eblocks
DON'T LOSE YOUR TEMPER

Before phoning us - if you are looking for a hard-to-find part. We have over 20,000 items in stock - including obsolete and up-to-date parts.

WHY NOT VISIT OUR WEBSITE
www.cricklewoodelectronics.com

2N 2SA 2SB 2SC 2SD 2P 2SJ 2SK 3N 3SK 4N 17 40 AD
ADC AN AM AY BA BC BD BDT BDV BDX BF
BFR BFT BFY BFX GY BLX BS BR BRX BRY BS
BSS BSV BSX BT BTA BSB BRW BU BUK BUT BUW
BXU BUW BUZ CA CD CX CXA DCG DM DS
DT A DTC DL GM HA HCF HD IEF IEC ICM IF J KA
KIA L LA LB LC LD LF LM M MSM MA MB MAX MB
MC MDAJ MEJ MFE MM MN MPS MPSA MPSH MPSU
MRF NM NE OM OP PA PAL PIC PN RC S SAA SAB
SAD SAI SAS SDA SG SI SL SN SO STK STR STRD
STRM TRS STR SSV TT TTA TAG TBA TC TCA TDA TDB
TEA TIC TIP TIPL TEA TL TIC TIP TML TMS TPU U U AU
UAA UC UDN ULN UM UPA UPC XML VN XR X Z ZN
ZTX + many others

Electronic Components - Packed and Individually Labelled
Mail order F.A.P. £2.50 if ordered online £3.50
New arrivals
Product Code Set Contents Price
Computer Interfacing Set CR-001 45 pieces £5.99
IC Socket Set CR-002 30 pieces £2.99
RCA Audio Connector Set AUD-001 28 pieces £3.99
Speaker Connector Set AUD-002 10 pieces £3.99
Single Throw Switch Set SW-001 26 pieces £2.99
Push Button Switch Set SW-002 34 pieces £2.99
Popular sets
Product Code Set Contents Price
1/4W Metal Film Resistor Set RES-001 1080 pieces £9.99
1/2W Metal Film Resistor Set RES-002 1040 pieces £9.99
250k Ohm Resistor Set SMD-001 1123 pieces £12.99
Radial Electrolytic Capacitor Set CAP-001 105 pieces £4.99
Capacitor Polymer Capacitor Set CAP-002 100 pieces £4.99
Ceramic Disc Capacitor Set CAP-003 255 pieces £5.99
Tantalum Bead Capacitor Set CAP-004 37 pieces £4.99
1206/0805/0603 SMD Cap Set SMD-002 500 pieces £14.99
BNC Connector Set BNC-001 15 pieces £4.99
GBP Prototyping Stripboard PCB-001 1 piece £3.99
Buy now and receive a further 10% discount. Quote key word ‘EDISON’

Order and browse online at: www.fastcomponents.co.uk

The world beating PCB design software

Easy-PC version 9 just gets better
Winning accolades the world over, Easy-PC for Windows 9 is another major milestone in the evolution of this extremely popular software tool. Try a demonstration copy of Easy-PC and prepare to be amazed at the power, versatility and remarkable value for money.

Version 9 fetaures
■ 3D Board View
■ New Win XP User Interface
■ Reverse Engineer SCM from PCB
■ Track Fattening
■ Interactive Schematic Routing
■ New Sliding Toolbars
■ Component Clearance Checks
■ Alphanumeric Pin Names
Plus many more exciting features......

Stop press... Stop press... Stop press... Stop press...
Easy-PC imports Eagle files as well as Tsien Boardmaker 2 files

call for a brochure, price & CD on +44 (0)1684 773662
or e-mail sales@numberone.com
you can also download a demo from
www.numberone.com

Number One Systems - Oak Lane - Bredon - Tewkesbury - Glos - United Kingdom - GL20 7LR UK
In this final part of the Delphi course we will continue with the development of the sprinkler system started in part 9. More valves are added to the system, as is a water pump. On the software side we will add a timer function. The end result is a 'grown-up' sprinkler system that will prove its worth during the summer.

In the previous part we started the sprinkler system project. We created a basic system, which was first simulated in Delphi. The program was then stored in the Delphi Stamp. Here we made use of the evaluation kit, specifically the LCD, the pushbutton, a second pushbutton (connected to the second analogue input) and the LEDs, which were used to indicate the state of the outputs. In that system you could select individual valves, how long they stayed open for and how often the cycle should be repeated.

In this instalment the object is to enhance the project with the addition of more valves, a water pump and the facility to start the sprinkling cycle at a later time (for example during the night).

We would like to call up and modify the settings via a PC, using a monitoring/configuration program. (The program for the Delphi Stamp is developed in Delphi, then cross-compiled and stored in the Delphi Stamp. This then functions completely independently.

The monitoring/configuration program is a separate application. This program runs on a PC and uses an RS232 cable to read and modify the settings of the Delphi Stamp program, effectively controlling it remotely.)
There are two ways in which the project can be expanded:
We can either use the existing I/O capabilities of the Delphi Stamp or we use the I2C port to communicate with the extra hardware.
In this case we decided to use the I2C interface, and the necessary pushbuttons and outputs are connected via an I/O chip to the Delphi Stamp. For this we use a PCF8574, which has 8 I/O lines that can be written to or read from. A maximum of 16 of these chips can be addressed on the bus, which means that the system can be easily expanded to have up to $16 \times 8 = 128$ I/O lines. When this is later used on a standalone basis (without the evaluation board), the only connections needed are for the Delphi Stamp, the LCD, the I/O chip and the power drivers (Figure 1).

The software
We'll use the source code of the last instalment as the basis for developing the software. The simulation has to be expanded with the I/O chip, two pushbuttons and six outputs. These are added to the existing control panel in the Graphical User Interface (Figure 3). The underlying code has to be modified in several places.

The menu structure
We have to add two buttons to the form of the program. We'll use Speedbuttons for these (because they have a 'Down' property; when clicked, this property becomes True).
Two procedures and a function are added to the unit Udri vers: TWI_init (Two Wire Interface = I2C), PCF8574_WR (Write) and PCF8574_RD (Read). In the simulation they emulate the actions of the drivers in the Delphi Stamp. The init doesn't do anything in the simulation and is therefore empty.
PCF8574_WR is responsible for updating the colour of the LEDs on the screen. PCF8574_RD reports the state of

Figure 1. The circuit diagram for the hardware used in this project.

Figure 2. An example of the valve driver, using 24 Vat.

Figure 3. At the bottom-left: the two buttons and six LEDs.
Figure 4. All the functions in the menu.
the pushbuttons. It does this by looking if the 'Down' property is set to True. If this is the case it will be reflected in the return value of the function. That covers the expansion of the simulation. The core of the program, the unit UControl, requires more attention. We want to increase the number of valves from three to five, and use the sixth output to drive a water pump to provide our own water pressure. We also have to add an entry to the menu for setting the start time. The array that holds the menu entries is therefore increased to hold 10 entries.

In the code for the menu we have to take account of the new size of the array. The menu entry 'Starting time' is added between 'Number of cycles' and the first valve

(Figure 4). In this way, when we add more valves at a later stage we can add them on after the last valve and we won't have to change the structure of the menu.

A sub-menu is added to the Start entry in the menu. From here we can choose between 'Start direct' and 'Start delayed'. 'Exit' is used to return to the main menu.

A similar menu can be found in the 'Starting time' menu entry, with the options 'Set start hour', 'Set start minute' and 'Exit'.

For the display of text on the LCD we have added the procedures 'ShowStart' and 'ShowTimer'. For going through the menu in a vertical direction (via button 1), Menulevel 1 has to be adapted. This now has a sub-menu with three options.

The valves are now dealt with one position further, from >4 to >5 in the comparison (if Menulevel > 5 then). Position 5 now deals with incrementing the values for the starting hour and minutes. When the hour becomes greater than 23 the variable is reset to 0 and the minutes are reset when the value goes beyond 59.

The time is stored in two variables: S_hour and S_min.

We will come back to these later on.

For going through the menu horizontally (via button 2) we have to change Menulevel 1. When button 2 is used to open the menu, the initial value is read from the array. This will be equal to 1, which corresponds to the 'Start direct' option. Button 1 can now be used to go through the submenu, where option 2 is for 'Start delayed' and option 3 is for 'Exit'.

When button 2 is pressed again, a jump is made to the left or right in the menu structure, depending on the current position (edit value).

When the edit value is >2 then the 'Exit' option is performed and the next item from the main menu will appear. If this isn't the case then when editmode = 1 the system will be started by setting the variable Run to True.

When editmode = 2 the variable Timer is set to True. These variables affect the actions of the program later on in the procedure ControlExe. But first we have to complete the menu. When setting the timer the menu is navigated in a similar manner, but this time when button 2 is pressed a second time we move another level to the right, into the Value-mode. The text on the display is provided by 'ShowTimer'. In Value-mode button 1 is used to increment the value.

The value of the edit-mode determines whether S_hour or S_min is incremented. When button 2 is pressed a third time we go back one level to the left.

At the end of the sub-menu we can return to the main menu via an 'Exit' option.

We will now explain the function of the variables S_hour and S_min. Together they make up the time at which a cycle should be started. This has to be compared with the current time, which is stored in the variables T_hour, T_min and T_sec. The Delphi Stamp doesn't have a real-time clock; hence we use a simple counter to increment these variables. The PC is used to set the correct time of the clock.

This takes us directly to the next item. To implement this the PC has to be able to write to the memory of the Delphi Stamp. This isn't a problem, since we can use M485.DLL, which communicates with the 485-server in the Delphi Stamp. Just three extra lines in the unit Umain for the Delphi Stamp project (so not in the simulation project) are all that's needed to start the server.

But how do we determine the location in memory for these variables? If we add them to a new unit and have this as the first unit in Umain for the Delphi Stamp, then they will be placed at the start of the available memory. If we look at the memory structure for the Delphi Stamp, we first see the BIOS. This goes up to $17f$, which means that the first usable address will be $180$. This is therefore where the first variable is stored, and the rest follow on from here.

We therefore create a new unit called UMem.

We add the following variables to this:

T_hour, T_min, T_sec of type Byte, which are used for the display of the current time.

S_hour, S_min of type Byte, which are used to store the starting time.

From UControl we move these variables here:

Settings : Array[1..10] of Byte, for storing and reading the settings.

Run of type Byte, to keep track of the status. (0 = False, >1 = True).

Timer of type Byte is added to determine the status of the timer function.

And that's all that is required.

More on UControl

We add the unit UMem to the Uses section of UControl so we can make use of the variables.

Some code is added to the procedure ControlInit for the initialisation of the IPC (TWI_init) and the new variables. We also set default values in all of the menu entries here.

Most of the changes are made within the procedure ControlExe.

To start with, some code is added to keep track of the time. The procedure ControlExe is called every 100 ms. We then count to 10 to obtain one second, then to 60 for the minutes and again to 60 for the hours. When the hours reach 24, everything is reset to zero and a new day begins.

The clock is displayed on the bottom line of the main menu. The code that deals with the bottom line has been modified for this. When the timer function has been activated the bottom line will show the word 'Timer' followed by the time remaining. This is calculated by a separate piece of code using the values of T_hour/T_min and S_hour/S_min.

The changes in the menu are made by adapting the section that deals with EditMode. In Menulevel 1 the routine ShowStart is added and in Menulevel 5 ShowTimer replaces ShowValve, which moves on to Menulevel > 5.

When it's time to start the cycle we set Run to True. At this moment in time we also make a note of all the settings. Up until then they could still be changed (externally). An extra bit of code has been added to read these settings when the Run-mode begins. This occurs just
before the cycle is started.
And now for the I/O. The reading of the pushbuttons is
replaced by the reading of the I2C chip. From the
returned value we can determine which buttons are
pressed and which procedure has to be called.
The procedure SetValve also has to be adapted for use
with the I2C chip. In here a binary number is written to
the chip using PCF8574_Wr, with the value depending
on the valve that needs to be activated. Along with the
valve, the bit for the pump is also turned on. At the end of
a cycle everything is turned off.
This concludes the changes needed in the program.

If we press button 2 from the ‘Start’ option we reach a
sub-menu with the option ‘Start sprinkling’. Pressing but-
ton 2 again will start the cycle.
We see that the left-hand LED turns on as will the right-
hand LED of the first enabled valve, which is normally
valve 1 (assuming that no parameters have been
changed and valve 1 was turned off). At the end of the
sprinkling time the next valve is turned on. At the end of
the cycle the last valve is turned off, as well as the pump.

The last topic is the starting of the timer.
If we go to the option for ‘Starting time’ in the main menu
and then press button 2 we reach a sub-menu to ‘Set start
hour’. If we press button 2 again we go another level
down in the sub-menu and can now adjust the value for
the starting hour using button 1. When you have set the
required value, button 2 will return you to the previous
sub-menu. Button 1 can then be used to step to the next
option to ‘Set start minute’. In here we can set the starting
minute and exit using button 2. With button 1 we step to
the ‘Exit’ option and then press button 2 to return to the
next option in the main menu.

The starting time has now been set. If we now go to the
‘Start’ option of the menu and press button 2, we can use
button 1 to choose the ‘Delayed start’ option. Pressing
button 2 will activate this and the display will show
‘Timer xxxxxx xx’, indicating how much time is left before
the cycle will start. Pressing button 2 again will exit from
this mode.

When the timer is turned on, the internal variable Timer is
set to True. In ControlExe the starting time is continually
compared with the current time and the display is
updated.
When the result of the comparison equals zero, Timer is
set to False and Run is set to True to start the cycle. At
the end of the cycle the system turns itself off.

Please note that soon after the initialisation of the time-
variables it can happen that the cycle starts immediately
when the timer mode is turned on. The comparison of the
times works by comparing the variables T_hour/S_hour
and T_min/S_min. If the timer mode is selected within the
first minute after turning on the Delphi Stamp these values
are all still at 0, with the result that the cycle starts.

**To the Delphi Stamp**
The unit UControl, which was created and tested in Del-
phi, has to be copied to the directory where the project
for the AVR compiler is stored. The unit UMem is new as
well, so also has to be copied.
We then run AVRpas and start a new project. Make sure
that all settings are correct (refer to the description in the
previous article) and give a name to the project. Add the
file UMain and make this the main file.
You should then open the other files in the editor via
File/Open and add UDrivers.pas, UControl.pas and the
unit UMem. The I2C driver has been added to the unit
UDrivers. This has been kept separate on purpose to
show how easy it is to add new modules whenever they
are required. The enhanced version is called UDriversEx
and is included in the project via the ‘Uses’ section of
Ucontrol.
Compile these two files via Compile/Current editor file.
Sometimes there may be a few error messages because
some of the Delphi functions aren’t included in AVRpas.
These can often be corrected by making simple modifica-
tions, giving a successful compilation.
Compile the project: Project/Main Project file. The code
has then been generated and you can exit from AVRpas.

The file created by the cross-compiler, which contains the
binary code, now has to be stored in the Delphi Stamp.
For this we’ll use an RS232 connection and the program
Mon485, which connects to the M485 server running on
the Delphi Stamp. Copy the program across to the Delphi
Stamp, which then becomes a fully independent device.

**Monitoring via the PC**
The monitoring via a computer is done with a separate
program. By ‘monitoring’ we mean that the program can
read and display all settings.
In this case we can also send new settings to the Delphi
Stamp via the Write button.
During normal operation the program will be in Read-
mode. All parts of the system can be found again in the
monitoring program: the LCD display, the settings, the
two start options and the status of the outputs. Added to
these are the actual time (from the PC) and buttons for
reading the settings or write them to the Delphi Stamp.
This program communicates via the M485 protocol with
the Delphi Stamp and can retrieve the stored settings.
The buttons marked Start and Timer Start are used to set
the Delphi Stamp in either Run or Timer mode.

The description of this application for the Delphi Stamp
concludes the course in Delphi for Electronic Engineers.
We hope that you’ve found it very informative.
More information about the Delphi Stamp can be found
at www.vogelaar-electronics.com. Further details about
this course and the programs are at www.learningdel-
phi.info.
Ho! Ho! Ho! Christmas 2005 is on it's way
BUT DON'T PANIC!!
We have some fantastic gift ideas for young (and older) enquiring minds

Electronic Project Labs
An electronics course in a box! All assume no previous knowledge and require NO solder. See website for full details

30 in ONE - £14.95
Order Code EPL030KT

130 in ONE - £33.95
Order Code EPL130KT

300 in ONE - £48.95
Order Code EPL300KT

500 in ONE - £134.95
Order Code EPL500KT

Digital Recording Laboratory - £24.95
Order Code EPLDR

Solderless Electronic Project Kits

Robot Sensor - £14.95
Order Code EPLR20

AM-FM Radio Kit - £6.95
Order Code ERKAFKT

Short Wave Kit - £6.95
Order Code ERKSWKT

Crystal Radio Kit - £6.95
Order Code ERKSWKT

Electronic Bell - £8.95
Order Code EAKEBKT

Electronic Motor - £8.95
Order Code EAKEMKT

Hand Held Metal Detector - £9.95
Order Code ELMDDX7KT

Metal Detector - £9.95
Order Code ELMDDKT

Mechanical Motorised Wooden Kits
Future engineers can learn about the operation of transmissions steered through gears or pulleys. Easy to build, no glue or soldering required.

Stegomech - £12.95
Order Code C21-602KT

Tyrannomech - £12.95
Order Code C21-601KT

Musical LED Jingle Bells - £17.95
Order Code 1176KT

Hi-Tech Microcontroller Multi-Coloured Christmas Tree - £18.95
Order Code 3103KT

See our website for even more great gift ideas!
Tune in with Matlab

Wolfgang Hartmann and Burkhard Kainka

DRM broadcasts provide unparalleled programme quality on short, medium and long wave frequencies. Diorama is a new open-source DRM decoder program developed at the University of Kaiserslautern, Germany. With the addition of a little hardware it can decode these long range transmissions and play them in real-time on a PC. A strongpoint of this implementation is its use of MATLAB which provides an insight into the nuts and bolts of signal processing.

Figure 1. Additional information is displayed via the control panel.

Figure 2. Received signal information.

Radio broadcasts using the DRM (Digital Radio Mondiale) digital format are becoming more commonplace but commercial receivers are still a little thin on the ground and needless to say very expensive; a good enough reason to add a low cost RF front-end to your PC (e.g. the Elektron Electronics DRM receiver [1]) and decode the signals with software.

Diorama is a complete open-source DRM receiver decoding program operating in real-time that has been developed by Torsten Schorr and Andreas Dittrich at the Institute of Telecommunications at the University of Kaiserslautern [2]. The program is similar to the ‘Dream’ software that regular readers will recognise from our earlier articles on DRM receivers [1]. Diorama is implemented using the numerical computing environment MATLAB. This approach enables the signal decoding process can be interrupted and examined at any point to gain valuable understanding of the signal processing behaviour. The program requires version 5.2 of MATLAB (release 10) or higher. A graphical user interface for adjustment and display of system parameters is optional. The input signal spectrum, synchronisation variables, received S/NR and many other variables are shown in the standard online display. In addition it is possible to display the received signal along with the recovered output data.

First Impressions

For those who do not have the full version of MATLAB there is an alternative EXE version of Diorama that only requires a runtime version of MATLAB (MCRInstaller). We tested this version here in Windows XP. Once diorama.exe is started it runs in the background in a DOS window. The Diorama Control Panel is also dis-
A look at the new open-source DRM decoder program Diorama

The concept
By Torsten Schorr and Andreas Dittrich

MATLAB was chosen for this project to handle the received data stream because it provides an interpreted script-like programming language that facilitates an efficient step-wise methodology for application software development and incorporates useful debugging tools. In addition MATLAB incorporates many useful mathematical signal processing tools and functions for data visualisation.

Use of the internal signal processing routines of MATLAB together with a little native code where necessary (for the more processor-intensive tasks) ensures that Diorama executes fast enough to be able to decode the DRM signal in real time.

In addition the user is able to manually interrupt program execution and observe internal data and variables with the help of the MATLAB integrated visualisation tools. Program execution can be stepped and break points inserted. Changes to the program code can be easily made which take effect immediately when Diorama is restarted without the need to recompile the code. Development and debugging of the new algorithms for DRM decoding proved to be relatively simple and much faster using this development environment. This environment is also a useful educational tool because the operation of many telecommunications algorithms can be illustrated with Diorama.

MATLAB is also available as a compiler version. Depending on the release version of the compiler, it can either produce binary files (in this case DLLs) or files using MATLAB's own file format. In both cases an executable (.exe) file is generated which runs like any other software applications on the PC. The necessary libraries including signal processing, visualisation tools and a virtual processor for the MATLAB specific format are contained in a runtime environment which must be installed in parallel to the Diorama program.

played but this can be closed if you prefer the application to 'disappear' from the screen. Diorama handles signal decoding only, tuning and setup of the DRM receiver hardware is performed by an additional program such as DRM.exe for the Elektor Electronics DRM-RX [1].

With the Control Panel (Figure 1) it is possible to view additional data. Signal info (Figure 2) identifies the received station and any additional data services from the station. Data such as the signal to noise ratio are also displayed. The received signal input spectrum is shown in Figure 3 and Figure 4 gives the three-dimensional 'signal constellations' of the received carriers.

The quality and robustness of the decoding process is comparable to the Dream software. When the received signal to noise ratio drops below the level where the signal can be reliably recovered the software outputs artificial noise on the audio so that it is possible to distinguish this condition from a temporary break in signal modulation.

A strongpoint of the software is the handling of information pages sent by DRM broadcast stations. The pages can be viewed using your normal Internet browser application. Received images are stored in a folder and can be retrieved later if required.

![Input spectrum](image1)

Figure 3.
The signal spectrum display gives a clear impression of the input signal.

![Signal Constellations](image2)

Figure 4.
The receive Signal Constellations shown in 3D.

Literature and Links

12/2005 - elektor electronics
Microcontroller Basics

Burkhard Kainka

Microcontrollers have become an indispensable part of modern electronics. They make things possible that vastly exceed what could be done previously. Innumerable applications show that almost nothing is impossible. There's thus every reason to learn more about them, but that raises the question of where to find a good introduction to this fascinating technology. The answer is easy: this Microcontroller Basics book, combined with the 89S8252 Flash Board project published by Elektor Electronics. This book clearly explains the technology using various microcontroller circuits and programs written in several different programming languages. In the course of the book, the reader gradually develops increased competence in converting his or her ideas into microcontroller circuitry.

Flash Microcontroller Starter Kit

Elektor Hardware & Software

Step into the fascinating world of microcontrollers with the Elektor Electronics Flash Microcontroller Starter Kit. Order now the ready-assembled PCB incl. software, cable, adapter & related articles.

Contents of Starter Kit:
• 89S8252 Flash Microcontroller board (ready-assembled and tested PCB)
• 300-mA mains adapter
• Serial cable for COM port
• Software bundle on CD-ROM
• Article compilation on CD-ROM

More information on www.elektor-electronics.co.uk
WIZ-C for the PIC – Rapid Application Development in C
NOW available with USB Development System

WIZ-C – ANSI Compiler and Rapid Application Development in C
- WIZ-C is more than a C Compiler for the PIC – it is a complete development environment with rapid access to library components with point and click set up.
- Ideal for beginners, includes full tutorial manuals and an introductory manual to the C language.
- Syntax highlighting editor.
- Full ANSI C Compiler
- Large libraries included for displays, ports, data transfer, keypads, graphics, bootloader and C standard functions.
- Extensive simulation capabilities, very rapid program execution, includes simulation of LCD, LED switches, I2C, RS232 terminals etc. Inspect C variables in C format
- Logic analyser can display waveforms of PIC pins and internal registers simplifying debugging.
- Includes assembler to allow you to develop assembler projects in their own right, or as part of C projects
- LITE version supports the most popular PIC devices – academic users may choose these types.
- UK written and supported.
- Priced from £35.00

USB development Support
- Add on library provides point and click CDC support to WIZ-C
- Installs as a virtual com port – access easily from C, Visual BASIC, Hyperterminal etc.
- Development board (pictured) based on 18F2550 supplied with bootloader and sample application
- See website for details

We accept major credit cards and Switch.
Order securely from our site www.fored.co.uk or contact us by phone or fax on 01590-681511. email info@fored.co.uk.
Forest Electronic Developments, 12 Buldowne Walk, Sway, Lymington Hampshire, SO41 6DU

www.fored.co.uk  info@fored.co.uk

Elektor's Components Database gives you easy access to design data for over 5,000 ICs, more than 35,000 transistors, FETs, thyristors and triacs, just under 25,000 diodes and 1,800 optocouplers.
All databank applications are fully interactive, allowing the user to add, edit and complete component data.

More information on www.elektor-electronics.co.uk

CD-ROM
ECD
Edition 3

ISBN 90-5381-159-1
£12.95 (US$ 22.90)
Order now using the Order Form in the Readers Services section in this issue.

Flektronics (Publishing) / Segment B.V.
Regus Brentford
1000 Great West Road
Brentford TW8 9HH
United Kingdom
Tel. +44 (0) 208 261 4509

Audio Collection 2
A unique CD-ROM for the true audio lover, containing no fewer than 75 audio designs from the past five year volumes of Elektor Electronics magazine. The articles on the CD-ROM cover test & measurement equipment, amplifiers, digital audio and loudspeaker technology. Highlights include the Crescendo Millennium Edition, Audio-DAC 2000, Audio-ADC 2000 and the IR-S/PDIF Transmitter and Receiver. Using the included Acrobat Reader you are able to browse the articles on your computer, as well as print texts, circuit diagrams and PCB layouts.

ISBN 90-5381-176-1
£12.05 (US$ 21.25)
Order now using the Order Form in the Readers Services section in this issue.

Flektronics (Publishing) / Segment B.V.
Regus Brentford
1000 Great West Road
Brentford TW8 9HH
United Kingdom
Tel. +44 (0) 208 261 4509

See also www.elektor-electronics.co.uk

12/2005 - elektor electronics
The semiconductor manufacturer Zetex has recently introduced a new family of current sensing ICs. These devices operate from a wide supply voltage range between +2.5 to 20 V and can be used in many applications including overload protection, battery chargers, cooling fan current monitoring or switch-on surge limiting. The four variants perform the same function but have different output characteristics; the measured current can be output as a scaled current or voltage and one variant has an internal comparator.

Measuring high-side current becomes a piece of cake when you use the ZXCT10xx range of devices from Zetex. The chips can produce a proportional output voltage referenced to ground by sensing current through a user-defined shunt resistor.

Current sensing with three external components

The basic configuration using a ZXCT 1010 and current sensing resistor (shunt) R1 is shown in Figure 1. This device outputs current at I_OUT is a scaled down measurement of the load current through R1. Resistor R2 is connected between I_OUT and ground and converts the output current into a voltage V_OUT. Internally the ZXCT1010 contains an op-amp, transistor and a 100 Ω resistor. The op-amp is configured so that when a voltage is developed across the sense resistor it will cause the transistor to conduct and divert sufficient current through its I_OUT pin so that the voltage across the op-amp inputs is reduced to zero. The voltage across the internal 100 Ω resistor will therefore be the same as the drop across the sense resistor (V_SENSE).

This relationship can be expressed mathematically:

\[ I_L \times R1 = 100 \Omega \times I_2 = V_{SENSE} \]

Rearranging for I_2:

\[ I_2 = \frac{I_L \times R1}{100 \Omega} \]

We can assume that the op-amp takes so little current at its inputs that all of I_2 passes through the transistor and...
out of I_{OUT}. The voltage (V_{OUT}) produced across the external resistor R2 can now be expressed in terms of the other variables:

\[ V_{OUT} = I_{OUT} \times R2 = I_2 \times R2 \]

Substituting the expression for I_2 above:

\[ V_{OUT} = V_{SENSE} \times \left( \frac{R2}{100 \, \Omega} \right) \]

\[ V_{OUT} = I_1 \times R1 \times \left( \frac{R2}{100 \, \Omega} \right) \]  [1]

The ZXCT1010 requires a value of R1 so that the load current produces a sense voltage of approximately 100 mV. The low sense voltage reduces power dissipation in R1. As an example, assuming a load current I_2 of 5 A, R1 can be calculated from:

\[ R1 = \frac{V_{SENSE}}{I_2} \]  [2]

\[ R1 = 0.1 \, \text{V} / 5 \, \text{A} = 20 \, \text{m} \Omega \]

It most cases it will be convenient to make this low value resistor using an etched track on the PCB. The required track length and width can be calculated providing the thickness of the copper layer is known (see ‘Printed current sensors’).

Once the value of R1 has been calculated it is now possible to choose the value of the scaling resistor R2 so that is gives the required output voltage for the load current of 5 A. For example we will pick an output voltage of 500 mV. Rearranging equation [1] for R2:

\[ R2 = \frac{V_{OUT}}{\left( \frac{I_1 \times R1}{100 \, \Omega} \right)} \times 100 \, \Omega \]  [3]

\[ R2 = \left[ \frac{0.1 \, \text{V}}{(5 \, \text{A} \times 0.02 \, \Omega)} \right] \times 100 \, \Omega \]

\[ R2 = 500 \, \Omega \]

Equation [1] becomes:

\[ V_{OUT} = 0.1 \, \text{V} \times \left( \frac{I_1}{1 \, \text{A}} \right) \]

It is important to choose R2 so that the value of V_{OUT} cannot be greater than the supply voltage V_{IN}. In practice the maximum value of V_{OUT} should always be a few volts less than the supply voltage.

Capacitor C1 filters supply-borne high frequency noise and should always be present in any circuit using a ZXCT10xx device to ensure stable operation and reduce any tendency for the device to oscillate.

**Current in/voltage out**

The ZXCT1021 and ZXCT1022 devices are basically the same as the ZXCT1010 but have a built-in scaling resistor (R2) and therefore have a V_{OUT} rather than an I_{OUT} pin. The resistor ratio of R2 / 100 \, \Omega in equation [1] is replaced by 15 \, k\Omega / 1.5 \, k\Omega = 10 for the ZXCT1021 and 15 \, k\Omega / 150 \, \Omega = 100 for the ZXCT1022. The equation for R1 then simplifies to:

For the ZXCT1021:

\[ V_{OUT} = 10 \times I_1 \times R1 \]

For the ZXCT1022:

\[ V_{OUT} = 100 \times I_1 \times R1 \]

The ZXCT1021 produces an output voltage of 1 V for a drop of 100 mV across the shunt resistor R1 while the ZXCT1022 produces the same output for a drop of 10 mV across R1.

---

**Figure 2.** Both the ZXCT1021 and ZXCT1022 have a built-in scaling resistor R2.

**Figure 3.** Bipolar current sensing configuration.

**Figure 4.** The characteristic of output voltage versus bipolar current.
Bipolar sensing

The ZXCT 1010 can only sense current flowing in one direction, when the current changes direction i_{OUT} remains at zero. Where an application calls for current sensing in both directions (e.g. monitoring the charge and discharge current of a rechargeable battery) it is necessary to use a bipolar current sense configuration. Figure 3 shows how two ZXCT1010s can be connected using the same sensing resistor R1 and output scaling resistor R2. The upper ZXCT1010 in the diagram has its VIN and LOAD inputs swapped around the sense resistor. Both R1 and R2 can be calculated using the formulae given above. For applications requiring the forward/reverse currents to be independently monitored the two V_{OUT} signals from each ZXCT1010 can be separated and connected to its own scaling resistor R2. Both the ZXCT1021 and ZXCT1022 have an in-built 15 kΩ scaling resistor but their tolerance is so wide (±30 % according to the data sheet) that these devices would, in most cases be unsuitable this type of configuration. Figure 4 shows the V_{OUT} to load current relationship.

The ZXCT1010 chip employs high side sensing without the need to disrupt the earth return. The device is also suitable in circuits where the supply rail exceeds 20 V but a few extra components are required (Figure 5). The zener diode ensures the supply to the ZXCT1010 does not exceed 15 V while the remainder of the supply voltage is dropped across the collector-emitter junction of T1. It is important to check that this does not exceed the transistor V_{CEO} rating. The voltage level of the IOUT pin will be one diode drop (0.7 V) above the base potential of T1. The high current gain of T1 enables us to ignore the base current and assume that the emitter and collector currents are equal. The scaled output voltage V_{OUT} is once again produced by I_{OUT} through R2 and can be calculated as before.

The value of resistor R3 is calculated to allow a current of 0.1 mA through the zener diode. The ZXCT1010 draws just 4 mA and the current gain of T1 ensures that its base current will also be comparatively small. The transistor is used in a common-base configuration.

The chip can also be used in conjunction with a MOSFET to both switch and sense the current to a circuit (Figure 6). The MOSFET drain-source resistance (R_{DS_{ON}}) is typically around 10 mΩ and is used to sense the load current in this circuit. The load resistor connected to pin 5 is only required if the output voltage drives an electrically noisy circuit that may generate voltage spikes greater than the maximum 20 V supply limit of the chip.
One thing to bear in mind with this circuit is that the value of $R_{DS\,ON}$ has quite a wide spread and is also a function of temperature. When the MOSFET is switched off $V_{OUT}$ rises to its maximum value because the drain-source voltage rises to a maximum and the current sense IC interprets this as maximum load current condition.

The type ZXCT1030 has a built-in comparator with an internal reference voltage and comparator input level [Comp_in]. In addition to the usual $V_{OUT}$ it has a digital comparator output (open collector) pin Comp_out that switches low when the pre-set threshold at Comp_in is exceeded.

References:
Data sheets from: www.zetex.com
ZETEX Application Note No. 39
ZETEX Design Note No. 77 [High Voltage Transients]

---

Printed current sense resistors

The current sensing element R1 has a relatively low value and can be cheaply made from a zigzag length of PCB track. The resistivity of copper is:

$$P_{Cu} = 0.0175 \, \Omega \cdot \text{mm}^2 / \text{m}$$

The copper layer thickness of a standard PCB is typically 35 µm. The resistance of R1 can be calculated from the length of copper track $L_{Cu}$ and its cross-sectional area $A_{Cu}$:

$$R_1 = \frac{P_{Cu} \times L_{Cu}}{A_{Cu}}$$

The cross-sectional area $A_{Cu}$ is given by the copper layer thickness and track width $W_{Cu}$:

$$A_{Cu} = 35 \, \mu \text{m} \times W_{Cu}$$

For example, assuming we require a resistance for R1 of 0.1 Ω. The calculated current flow indicates that a 0.2 mm wide track will be acceptable. Plug the value for R1 into the above formula and using a cross-sectional area of 35 µm × 0.2 = 0.007 mm² we arrive at a PCB track length $L_{Cu}$ of 40 mm.

The track must be able to pass the current without getting too hot. The table indicates maximum current rating for a given track width:

<table>
<thead>
<tr>
<th>Trackwidth $b_{Cu}$</th>
<th>Maximum current $I_{max}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 mm</td>
<td>0.5 A</td>
</tr>
<tr>
<td>0.2 mm</td>
<td>0.7 A</td>
</tr>
<tr>
<td>0.3 mm</td>
<td>1.0 A</td>
</tr>
<tr>
<td>0.5 mm</td>
<td>1.2 A</td>
</tr>
<tr>
<td>0.8 mm</td>
<td>1.5 A</td>
</tr>
<tr>
<td>1.0 mm</td>
<td>1.7 A</td>
</tr>
<tr>
<td>1.5 mm</td>
<td>2.0 A</td>
</tr>
<tr>
<td>2 mm</td>
<td>4.0 A</td>
</tr>
<tr>
<td>3 mm</td>
<td>6.0 A</td>
</tr>
<tr>
<td>5 mm</td>
<td>8.0 A</td>
</tr>
<tr>
<td>10 mm</td>
<td>12 A</td>
</tr>
</tbody>
</table>

The last consideration is how well copper performs as a resistor. The bad news is that it has a relatively high positive temperature coefficient i.e. as it gets hotter its resistance increases linearly by 0.4% / °C. A temperature change from +5°C to +45°C will result in a 16% change in resistance! The good news is that the ZXCT10xx family of devices have a negative temperature coefficient. This characteristic is not linear and is not as pronounced as copper (0.25 % / °C between +5 °C and +45°C) but it does go some way to offset changes bought about by heating R1. The device will need to have good thermal coupling to R1 to get maximum benefit from this effect.

The copper track sense resistor R1.
SMD soldering aid

Gert Baars

When soldering SMDs (surface mount devices) onto a circuit board, it is often difficult to keep the tiny component correctly positioned. With two hands in use, one holding the soldering iron and the other, the solder tin, you really need a third hand to keep the SMD in place. Fair enough, SMDs with a lead pitch of 0.05 inch stand a good chance of success if you melt-and-move a little to first secure the two corner pins of the IC to make sure it's properly aligned on the solder pads. Smaller ICs with a lead pitch of just 0.65 mm or even 0.3 mm are far more difficult to handle and really suitable for machine mounting only. A possible solution to the problem is to secure the IC to the board with a drop of hobby glue. Next, you align the IC using a magnifying glass and allow the glue to set. This may last up to a couple of hours. The author having run into this problem often enough, an idea came to mind to make a simple but effective little tool that's easy to produce at home.

We're looking at a kind of miniature clamping device capable of holding an SMD in place with sufficient force to allow it to be soldered, but less pressure than to crush the device! The first version consists of three strips of PCB material, an M3 nut, a pressure spring and some washers and nuts. The drawing shows that A, B and C are pieces of unetched board material secured to form a U-shape. At point 'A', a 3-mm hole is drilled at the end. A 60-mm long M3 bolt with one end filed into a tip is inserted into this hole. The bolt end protruding from the upper board strip (A) takes an M3 washer and a spring. The spring is conveniently salvaged from a ballpoint pen and should have relatively low pressure tension. Next, the long M3 bolt takes a washer and a nut, causing the spring to push the screw downwards. With a little adjustment of the nut, a setting can be found at which the screw exerts a little pressure on the IC on the board underneath it — just enough for our purpose. The drawing really speaks for itself. The tool is simple to use — first, put the SMD roughly in position on the board and lift the bolt a little. This is easiest done by pushing up the tip side. Slide the board under the bolt, aligning the IC under the tip. Because the bolt will have some play, the IC can be moved exactly onto its footprint using the tweezers, a matchstick or a small screwdriver. All the while, the bolt will exert enough pressure on the IC to enable you to solder the corner pins without shifting the SMD, but also allowing enough play to move the IC about a little while aligning. Should the IC start to slide off in the wrong direction, the spring pressure has to be increased a little by turning the nut up a little. The sizes of the materials used may be selected to personal requirements. The author's first version of the tool is intended for smaller PCBs and has the following dimensions:

A = 15×60×2 mm;  
B = 15×43×2 mm  
C = 15×75×2 mm.

In principle, it is also possible to machine the U piece from a single piece of metal sheet by bending two right angles and a curvature. If the material used is neither too thick or too short, it will exhibit enough tension of its own so a spring will not be required.

Simple Li-Ion battery charger

Elbert van Veldhuizen

After two to three years of active use most mobile phone batteries will have lost a lot of their original capacity, and are best replaced. However, such a discarded battery may have enough capacity left to power, for example, a real-time clock (RTC) for many months in the event of a power outage. What's more, the battery is 'surplus to requirements' and therefore free. Normally, a good amount of electronics is needed to charge Li-ion batteries in a couple of hours. However, the most important aspect to keep in mind during the charging process is the danger of overcharging, as that may lead to explosion. Figure 1 shows a simple circuit for slow charging while preventing any risk of overloading the battery. The circuit consists of just four components. The battery is charged to about a quarter of its capacity in one day, to 50% in one week and 80% in one month — sufficient we reckon for equipment that's on all the time. Depending on the exact type, a fully charged Li-ion battery supplies between 4.1 V and 4.2 V, or 3.6 V when empty. When charging, the circuit employs the non-lin-
Build your own rotary encoder

Gert Baars

The cheaper variety of rotary encoders, including those from Bourns, are mechanical devices rarely capable of generating more than 25 pulses per revolution (ppr). If more ppr are desired, an optical encoder is usually a better alternative. Devices exist in this class with up to 256 ppr but then the price is well beyond the reach of the hobbyist. A mechanical (pulley/string) transmission to increase the ppr of mechanical encoders is possible in theory but at the cost of an awkward amount of torque. Also, the simplest solution (apparently) of turning the mechanical encoder faster than usual is not viable as it will stress the device beyond its limits. Another alternative is to turn a small stepper motor into an encoder. After all, a stepper motor has permanent magnets inducing voltages in the rotor coils. Without going into too much detail, a stepper motor requires two signals with a phase difference of 90 degrees. The voltages generated per coil can then be said to represent a 'Gray code', that is, two voltages 90 degrees out of phase. Smaller motors salvaged by the dozens from old printers and flatbed scanners are particularly suited to our purpose as they usually turn smoothly and have a small cogwheel attached allowing a larger wheel to be driven. A 1:10 transmission for example easily results in a rotary encoder with 150 or so ppr, which may be very suitable for tuning a receiver in 100 Hz steps. Some printers and flatbed scanners have stepper motors with 1- or 2-wheel gear reductions on the spindle. The motor used by the author gave an effective reduction of 1:13 using two wheels. A 6-mm spindle was provisionally mounted on the second cogwheel, and turning the spindle resulted in 180 pulses per revolution.

In this circuit, voltages supplied by the coils in the stepper motors are converted into square wave signals having TTL levels. As with a 'real' Bourns encoder, Gray encoded signals are output at 90 degrees phase difference. The two opamps inside the TL072 case are configured as comparators. Thanks to their high gain, even small voltages are reliably processed, enabling your logic to respond when the spindle is turned slowly. The additional hysteresis created with R1 and R2 is required in view of the 'output' signals typically supplied by the stepper motor. This simple circuit is the poor man's equivalent of a very reliable, high resolution rotary encoder and may also be used to decode speed and direction of fast turning spindles on, for example, electric motors. Mechanical encoders simply aren't suitable for that purpose.

See your design in print!

Elektor Electronics (Publishing) are looking for Freelance Technical Authors/Designers

If you have an innovative or otherwise original design you would like to see in print in Europe's largest magazine on practical electronics – above average skills in designing electronic circuits – experience in writing electronics-related software – basic skills in complementing your design with an explanatory text – a PC, email and Internet access for efficient communication with our in-house design staff ...

then do not hesitate to contact us for exciting opportunities in getting your designs published on a regular basis.

Elektor Electronics – K. Walraven, Head of Design Dept.

R.O. Box 75, NL-6190-AB Beek, The Netherlands, Fax: (+31) 46 4370161 Email: k.walraven@segment.nl
Right-angle LEDs
...a good (soldering) exercise

Karel Walraven

The miniaturisation of components does cause the odd bit of trouble at Elektor Electronics as well. While developing last June's Electrosmog Tester our lab suffered a few unpleasant setbacks. Read along...

For the Electrosmog Tester featured in the June 2005 issue of this year we looked for LEDs that radiated light towards the side instead of upwards, which is usually the case. Normally this is not an issue. With a standard leded LED you can easily bend the legs so that the LED can point in any desired direction. However, with this project we wanted to keep things small and cheap. There are LED-arrays available that can be mounted on the side, but the price of these cannot be called attractive at all. That's why we started looking in the area of SMD LEDs. By coincidence we stumbled upon a 'right angle LED' from one of the larger manufacturers. To be honest, we didn't know that components with this name existed, and we couldn't quite image what they were. It wasn't immediately clear in which direction the light left the LEDs. The method of mounting was also a cause for debate. The LEDs had copper surfaces at the ends and on the bottom, while we would have expected conductive surfaces along the long edges. This is, after all, the side of the LED that is in contact with the copper on the PCB. But it wasn't like that.

We quickly ordered a few and made the footprint for the PCB. Everything looked fine. Soldering by hand was not a problem. The LEDs are of good quality and are quite bright. There is also a clear mark that indicates the cathode, so making a mistake is nearly impossible. When the first batch went into production we were still in high spirits. But soon there was a phone call from the contract assembler. The footprint for the LEDs was not correct. On the PCB, the LEDs were rotating on their pads and were pointing in all directions, because the pads were too long and too close together. This required some further investigation. We studied the datasheet again, and sure enough, the footprint in the datasheet was correct. We had made a mistake. Out of habit, when drawing the footprint we placed the pads with the long sides parallel. That was completely wrong in this case. Now we also understand why the contact surfaces are on the ends... To add to our misfortune, we had to solder some thousand fiddly SMD LEDs by hand...

A new batch and new opportunities. With the now corrected footprint everything will be all right, we thought. But, and you can see this coming, this was not to be. Another phone call from the contract assembler: all the LEDs are the wrong way around, the cathode and anode were swapped. We didn't understand that. Surely every component can be placed on the PCB rotated at any angle? Since when do all transistors and electrolytic capacitors have to be placed in the PCB all pointing in the same direction? This is true, and applies to all components, except to right angle LEDs. You can turn them around, of course, but then they will shine their light into a different (and therefore wrong) direction. If the LEDs come with the cathode on the left out of the tape, then the cathode stays on the left and there is nothing that can be done about it. The surface mount assembly machine cannot turn components upside down. Well, there is no end to our misfortune. For the second time we had to solder a thousand fiddly SMD LEDs by hand, and design a new PCB...

Everything turned out all right in the end. We learned our lesson (SMD LED soldering). And, as they say: 'Practise makes perfect'.
Analog Multimeters

Jan Buiting

The great thing about using an old analogue multimeter is that you find yourself actually thinking before taking a measurement. Questions you ask yourself should include: what value can I expect to see; what range should I select; what is the object of my measurement actually damage the meter, and, where do I plug in the test leads on the meter? Youngsters used to using DMMs with multi-digit displays and sleek, rugged cases will laugh their heads off and simply connect their meter to any circuit with no polarity in any way and wait for any error signal, preferably texted to their mobile phone with a nice ringtone to go with it. What do you mean you have to know what you measure?

While not deprecating the huge technical progress vested in digital multimeters, nor their accuracy, ruggedness and low cost, the instruments make sloppy engineers because it is no longer necessary to know what the circuit you’re measuring is actually doing. Typically, the DMM user will initially marvel at the reading on the display and only then attempt to understand the circuit he or she is dealing with. I guess the two analogue multimeters pictured here differ some 10-15 years in age, the Simpson Model 260 (series 79) being the oldest. Its black ABS case is very rugged, with a carrying handle that doubles as a tilt stand. With this meter you sure have to know what you’re doing as there are no fewer than four pairs of input sockets for the test leads to plug into, plus a rotary switch with positions +DC, -DC, AC/DC and 50V/amp/230mV.

In good US tradition, the back panel has a 250-word safety statement including more don’ts, cautions, warnings and disclaimers than useful instructions on how to use the instrument. The moving coil meter is proudly identified as a ‘taut band suspension’ type, while the meter load is stated as 20 kΩ/V for DC and 5 kΩ/V for AC. As usual with these multimeters, high current (10 A) and high voltage (1,000 V) measurements require the test leads to be relocated into separate inputs. The Simpson meter is powered by a 1.5-V and a 9-V battery and has no active parts like FETs. The ranges on this instrument are 1mA, 10mA, 50mA, 2.5V (1V), 10V, 50V (µA), 250V, 500V (1000V), R×1, R×100; R×10,000, off/transit. The meter shown is in mint condition — I recently saw one on Ebay fetching about 50 dollars. Genuine ‘AVO’ meters are now collectibles!

The Philips PM241 pictured here comes straight out of the box, having been in safe storage for I guess about 30-35 years. It is a typical example of mid-1970s case styling using an anodized aluminum front panel that’s not scratch-proof. The meter scale has a parallax effect. If you close one eye and adjust your viewing angle until just one needle is seen. Again laughter from the DMM generation but a quick test shows that the reading accuracy obtained in this way is better than 0.5 percent. The PM241 is powered by the same batteries as the Simpson 260 and even has a small spool of resistance wire inside to replace the fuse protecting the 3 A range.

A narrow pushbutton we thought was labelled ‘0.4 x 1’ in the centre of the rotary switch initially puzzled us but then it turned out that pressing it in the current ranges causes the meter sensitivity to increase by 1/0.4. Weird but useful. This allows a volts scale to be used for better accuracy. The ranges of this beautiful meter are 300µA, 3mA, 30mA, 300mA, 3A, Off, ×1Ω, ×10Ω, ×10kΩ, 300V (1200V), 120V, 30V, 12V, 3V, 1.2V, 3V (0.6V), Separate test lead inputs are available for the 60 mV and 1200 V ranges. I could not resist installing batteries in the PM241 and put it through its paces. It worked perfectly on all ranges with better accuracy than I will ever require.

The Simpson and Philips meters both have a ‘reset’ pushbutton operating as circuit breaker to clear an overload condition. In practice, you will hear a click sound when you make a gross mistake in connecting up the meter.

Finally, two advantages of analogue multimeters over their digital counterparts should not be left unmentioned. Firstly, the old meters will show a trend which is useful in adjustment work — the movement of a needle being easier to resolve than rolling digits. Second, most of these oldies will double as a relative field-strength meter for transmitter alignment well into the VHF range — just switch to literally any AC range and use one test lead as an antenna.
LEDs detect light
As is generally known, LEDs are used to generate light. That the same devices can also detect light is a less known fact. However, the currents and voltages generated in this way are generally so small as to make practical use almost impossible.

Nonetheless we will concentrate on this 'out of the ordinary' use of LEDs. To measure the current generated by an LED, we use the transimpedance amplifier shown in Figure 1. Its function is to turn the current I generated by the LED into a proportional voltage U, and more specifically at zero bias voltage on the LED. The conversion factor is 1 V per 100 nA. Offsets, if any, may be compensated using the preset in the circuit.

We now take a red, a green and a yellow LED and connect them to the circuit one by one. A 0.6-watt miniature bulb is used as the light source. The currents generated are listed in

Solution to the October 2005 problem

(p. 78: vanishing voltage)
When dimensioning opamp circuits, it is common practice to assume infinite open-loop gain H supplied by the opamp. However in the case of the problem we need to see how this assumption can be upheld. Because the circuit operates at a relatively low frequency, OP1A amplifies input voltage $U_i$ by 10, while OP1B amplifies $U_m$ by 100. This makes $U_o$ into an output voltage, amplified by OP1A's open-loop gain H. So we can write (except for the sign, in view of the inverting action):

$$U_o = 10 U_i = H U_m$$

which gives $H = 100 U_o / U_i$

However the open-loop gain is frequency dependent - the relevant response for the TL082 device from Texas Instruments is shown in Figure 3. Below a relatively low frequency (here, about 30 Hz) the opamp exhibits constant high gain ($H$ approaching 200,000) without phase shift. Above this frequency, $H$ drops at a rate of 10 (20 dB) per decade at an almost constant phase shift of 90 degrees. This range extends almost to 3 MHz, with the product of frequency and gain remaining virtually constant. This parameter is called the Gain/Bandwidth product (GBW) of the opamp. For a TL082, GBW is typically 3 MHz. Consequently, the open-loop gain $H$ will be about 3,000 at 90 degrees phase shift (see also Fig-
This 15th instalment marks the end of the Quizz’away series in Elektor Electronics. The problems to solve were supplied by Professor Martin Ohsmann of Aachen Technical University.

Table 1. Next, we use a laser pointer for the light source and a red LED as the sensor. As you can see from the table, this combination generates a relatively high current, providing proof of the laser power. The table has two missing values for you to supply.

<table>
<thead>
<tr>
<th>LED</th>
<th>bulb 6 V/0.1 A</th>
<th>laser-pointer</th>
</tr>
</thead>
<tbody>
<tr>
<td>red</td>
<td>100 nA</td>
<td>500 nA</td>
</tr>
<tr>
<td>yellow</td>
<td>150 nA</td>
<td>??</td>
</tr>
<tr>
<td>green</td>
<td>30 nA</td>
<td>??</td>
</tr>
</tbody>
</table>

This month’s question is: How much current can be expected when aiming the laser pointer at the green and yellow LED respectively?

Plus an additional question: For what achievement was Albert Einstein awarded the Nobel Prize?

Table 2. This allows us to calculate the results: at $U_a = 250 \text{ mV}_{\text{eff}}$ we get

\[ U_b = 10 U_a = 2.5 V_{\text{eff}}. \]

Hence we have $U_m = U_b / 3,000$ and we can write

\[ U_a = 100 \times 2.5 V_{\text{eff}} / 3,000 \]

\[ U_a = 83 \text{ mV}_{\text{eff}}. \]

The actually measured value of 80 mV seems to agree well with the theoretical result. $U_a$ will lead $U_b$ by 90 degrees.

The two output voltages are shown in Figure 4, which proves their phase difference. The levels of $U_a$ and $U_b$ may be verified using the scaling factors. The same experiment was repeated using other opamps. The results appear in Table 2.
ELEKTOR SHOWCASE

To book your showcase space contact Huson International Media
Tel. 0044 (0) 1932 564999 Fax 0044 (0) 1932 564998

ALLGOOD TECHNOLOGY
www.allgoodtechnology.com
Low-medium volume sub-contract assembly. SMT specialist since 1990. Customers include military, aerospace etc. 0402 to BGA capabilities, automatic assembly and hand built prototypes.

BETA LAYOUT
www.pcb-pool.com
Beta layout Ltd Award-winning site in both English and German offers prototype PCBs at a fraction of the cost of the usual manufacturer’s prices.

DESIGN GATEWAY
www.design-gateway.com
PalmLogic II ... US$ 399.00
- Compact Logic Analyzer (L116mm x W73.3mm x T3mm)
- High sampling rate (400 MHz/ 8ch, 200 MHz/16ch, 100 MHz/32ch)
- USB 2.0 high speed mode
- 8MB memory storage
- Bus Analyzer function
- Multiple waveform output
- Waveform save/restore

DESIGN GATEWAY
www.design-gateway.com
True PCI Starter Kit ... US$135.00
- PCI Development Kit
- Based on 200,000 gates FPGA
- Extension connectors for 72 pin I/O
- Configuration support for JTAG and slave serial
- Free PCI Core for Target Mode

DESIGN GATEWAY
www.design-gateway.com
Ethernet IO ... US$115.00
- 8 bits embedded network microcontroller
- 6 channels available for 10 bits ADC
- Ethernet 10 BASE T 10 Mbit/s
- UART port RS232/RS485, Max Speed 115200bps
- 35 bits general purpose I/O
- 500 bytes user area flash memory

DESIGN GATEWAY
www.design-gateway.com
VariClock ... US$163.00
- Adjustable clock signal synthesizer
- 3 rotary switches for frequency setting
- Standard DIP pin arrangement
- Support both 3V/5V by on-board regulator
VC250MHz-P Frequency range : 25-400 MHz
Frequency setting : 1MHz step
VC100MHz-P Frequency range : 25-100 MHz
Frequency setting : 100 kHz step for 25-50 MHz

LAGNAC TECHNOLOGY LTD
http://www.lagnac.com
Test & Measurement Equipment Distributors
- Anemometers
- Clamp Meters
- Light Meters
- LCR Meters
- Sound Meters
- Multimeters
- Device Programmers
Burn Technology Limited, Winfrith Technology Centre, Dorchester, Dorset, DT2 8DH
Tel: (01305) 852090 Fax: (01929) 463214

ELNEC
www.elnec.com
- device programmer manufacturer
- selling through contracted distributors all over the world
- universal and dedicated device programmers
- excellent support and after sale support
- free SW updates
- reliable HW
- once a months new SW release
- three years warranty for most programmers

FUTURLEC
http://www.futurlec.com
Save up to 60% on
- Electronic Components
- Microcontrollers, PIC, Atmel
- Development Boards, Programmers
Huge range of products available on-line for immediate delivery, at very competitive prices.

FUTURE TECHNOLOGY DEVICES
http://www.ftdichip.com
FTDI designs and sells USB-UART and USB-FIFO interface I.C.’s. Complete with PC drivers, these devices simplify the task of designing or upgrading peripherals to USB

IPEVA LIMITED
http://www.ipeva.com
IPEVA sell low cost USB FPGA development boards. IPEVA provide Design Consultancy for Embedded Systems, OpenCore-IP FPGA, ASIC, HDL translation and migration. Tel. 0870 080 2340.

JLB ELECTRONICS
www.jlbs-electronics.com
Suppliers of electrical / electronic parts and consumables. Including:
- Cable ties / bases
- Tools / hardware
- Bootlace ferrules
- Connectors
- Solvent sprays & cleaners
- PVC Tape
- Heat Sink compound

LONDON ELECTRONICS COLLEGE
http://www.lec.org.uk
Vocational training and education for national qualifications in Electronics Engineering and Information Technology (BTEC First National, Higher National NVQs, GCSEs and Advanced Qualifications), Also Technical Management and Languages.
SHOWCASE YOUR COMPANY HERE

Elektor Electronics has a feature to help customers promote their business, Showcase - a permanent feature of the magazine where you will be able to showcase your products and services.

For just £220 + VAT (£20 per issue for eleven issues) Elektor will publish your company name, website address and a 50-word description.

For £330 + VAT for the year (£30 per issue for eleven issues) we will publish the above plus a 3cm deep full colour image - e.g. a product shot, a screen shot from your site, a company logo - your choice! Places are limited and spaces will go on a strictly first come, first served basis. So please fax back your order today!

I wish to promote my company, please book my space:

Text insertion only for £220 + VAT

Name: ________________________

Organisation: ________________________

Job Title: ________________________

Address: ________________________

Tel: ________________________

Please complete coupon below and fax back to 00-44-(0)1932 564998

Company Name: ________________________

Web Address: ________________________

30-Word Description: ________________________
In co-operation with Matrix Multimedia, the manufacturer of E-blocks, we are able to offer Elektor Electronics readers a choice of two Starter Kits with great discounts.

**E-blocks Starter Kit professional**

1. **Flowcode for PICmicro MCUs V2 CD ROM Pro version** £118.00
   Flowcode is a very high level language programming system for PICmicro microcontrollers based on flowcharts. Flowcode allows newcomers to programming to design and simulate complex robotics and control systems in a matter of minutes. The use of macros allows students to control highly complex electronic devices without getting bogged down in understanding the programming involved. Flowcode is a powerful rapid development tool and is also useful as a means of introducing the need for C and assembly programming. Pro versions include RS232 comms, IDRA comms, Keypad control, multiple servo control, on-board EEPROM routines. Dutch and German language pack available.

2. **USB Multiprogrammer** £77.30
   This new PICmicro microcontroller programmer connects to your PC via USB to provide you with a low cost flexible PICmicro microcontroller programmer for development and programming use. This board can be used with Assembly, C or Flowcode programming utilities provided by Matrix Multimedia. The board will program a range of 8, 18, 28 and 40 pin PICmicro® microcontroller devices from the 12, 16 and 18 series PICmicro range, using the programming software provided. A PIC16F88 device is included.

3. **LED board** £14.65
   Contains 8 LEDs with upstream and downstream D-type connectors. Further E-blocks can be connected to this E-block.

4. **Switch board** £19.30
   Contains 8 push to make switches with upstream and downstream D-type connectors. Further E-blocks can be connected to this Switch board.

5. **LCD board** £19.30
   16 character, 2 line alphanumeric LCD display on a 4 wire serial bus. Flowcode macros for driving this E-block are available.

* Extra: PIC16F877 microcontroller

**E-blocks Starter Kit professional**

**Total value:** £248.50
**Special offer:** £166.00

**E-blocks Starter Kit basic**

**Flowcode student/home:** £99.00
**USB Multiprogrammer:** £77.30

**Total value:** £176.30
**Special offer:** £96.00

Learn more about E-blocks?
For more information, visit [www.elektor-electronics.co.uk/eblocks](http://www.elektor-electronics.co.uk/eblocks)

**Ordering**
Use the order form at the back or go to [www.elektor-electronics.co.uk](http://www.elektor-electronics.co.uk)

E-blocks will be shipped after receipt of payment. Prices are exclusive of postage.
ESR/C Meter
(Sep 2005)
Kit of parts including PCB, default LCD module, 2x16 characters and programmed controllers.
Enclosure not included.
£ 63.99 / $ 119.95

Matching enclosure
£ 6.99 / $ 12.95

Electromag Tester
(June 2005)
Ready-built PCB
(excl. enclosure)
£ 50.00 / $ 94.25

Matching enclosure
£ 10.25 / $ 19.30

Further products from Elektor Electronics:

READY-BUILT PROJECTS £ $

ClariTy 300-W Class-T Amplifier
030217-91 Amplifier board with SMDs pre-fitted, cores for L1 & L2
34.50 55.70

Flash Microcontroller Starter Kit
012080-91 ready-assembled PCB incl. software, cable, adapter & related articles
69.00 112.50

Gameboy Digital Sampling Oscilloscope (GBDSDO)
990262-91 ready-assembled board, incl. the PC software and related articles
103.00 183.00

Micro Webserver with M:SC1210 Board
030059-91 Microcontroller Board, ready-assembled
75.00 142.50

Network Extension Board, ready-assembled
44.50 83.90

Combined package (030060-91 & 040238-91 & related articles)
117.50 220.95

LPC210x ARMme Development System
040444-91 Processor board, readymade and tested
25.50 48.05

NO. 349 DECEMBER 2005

Remote Control by Mobile Phone
040415-1 PCB
6.20 11.65

040415-11 Disk, PIC source & Hex file
5.20 9.75

040415-41 PIC16F84A-80I/P programmed
10.20 18.90

Synchronous Servos
020301-11 Disk, project software
5.20 9.75

020301-41 AT89C2051-16PC, programmed
7.65 14.65

NO. 348 NOVEMBER 2005

Temperature Logger
(June 2005)
Complete kit of parts including components, PCB and programmed controller
£ 25.85 / $ 48.75

Kits & Modules

OBD-2 Analyser
(July/Aug 2005)
Kit of parts including PCB, programmed controller, components (including IC7; IC3 = PCA82C250, 12 V), enclosure and RS232 cable.
OBD cable not included.
£ 52.50 / $ 96.95

OBD cable
£ 27.55 / $ 51.95

Colossus Jr.
£ 20.95

Flash Lock for PCs
£ 30.95

Hitting the High Note
£ 30.95

Precision Barometer/Altimeter
£ 30.95

Racetrack Timer
£ 30.95

1 MHz Frequency Counter
£ 30.95

Products for older projects (if available)
www.elektor-electronics.co.uk

Elektor Electronics (Publishing) / Segment B.V.
Regus Brentford
1000 Great West Road
Brentford TW8 9HH
United Kingdom
Tel.: +44 (0) 208 261 4509
Fax: +44 (0) 208 261 4447
Email: sales@elektor-electronics.co.uk

Due to practical constraints, final illustrations and specifications may differ from published designs. Prices subject to change.
See www.elektor-electronics.co.uk for up to date information.
Free Visual Basic 2005 booklet with the January 2006 issue

This short course on Visual Basic 2005 programming — designed especially for the electronics enthusiast — is presented to you free of charge. A series of lessons will get you started with hands-on practical experience immediately without long-winded jargon-filled talk. The booklet explains things in the simplest possible way, focusing on the essential and the important, through plenty of examples relevant to electronics. Even though Visual Basic is now a very powerful and complex language, it is also easy to use, provided one is led through the early stages. The built-in power of Visual Basic will enable you to write simple programs that produce professionally-looking results that would seem unimaginable to those whose experience goes only as far as the early versions of Basic at some years ago.

Do not miss this opportunity to get a free booklet on VB.
Reserve your copy of Elektor Electronics now!

Also...
Automatic Control for Atten Windows,
Electronic Part Mining,
RoHs, The RBC Family,
Laptop PSU,
Sudoku Hexadecimal Puzzle.

SMDs from the Oven
Many electronics enthusiasts still find manual soldering of SMDs difficult if not impossible. Some components are so small they can’t be soldered properly anymore even with the smallest solder iron. Some appear to overheat or take damage at even the slightest attempt to solder them at low power. Not to mention stuffing a board with SMDs, which can cause major headaches to say the least.
Elektor labs have modded an off the shelf mini electric oven so it can ‘bake’ a circuit board with SMDs pre-fit into position. The oven requires ‘minor surgery’ and is fitted with a specially designed thermostat control.

RESERVE YOUR COPY NOW!
The January 2006 issue goes on sale on Saturday 17 December 2005 (UK distribution only). UK subscribers will receive the magazine a few days before this date. Article titles and magazine contents subject to change.

NEWSAGENTS ORDER FORM
SHOP SAVE / HOME DELIVERY
Please save / deliver one copy of Elektor Electronics magazine for me each month

Name: ..................................................................................................................
Address: ..............................................................................................................
Post code: ...........................................................................................................
Telephone: .........................................................................................................
Date: ....................................................................................................................
Signature: ............................................................................................................

Please cut out or photocopy this form, complete details and hand to your newsagent.
Elektor Electronics is published on the third Friday of each month, except in July.
Distribution S.O.R. by Seymour (NS).

Index of Advertisers

Elektor Electronics .................. www.elektronics.co.uk .................. 81

Advertising space for the issue of 17 January 2006
may be reserved not later than 20 December 2006
with Huson International Media — Cambridge House — Gogmore Lane —
Chertsey, Surrey KT16 9AP — England — Telephone 01932 564 999 — Fax 01932
564999 — e-mail: calgain@husonmedia.com to whom all correspondence,
copy instructions and artwork should be addressed.

84
Order Form

12-2005

Yes, I am taking out an annual subscription to elektor electronics and receive a free 1 W Luxeon LED Torchlight.

I would like:

- Standard Subscription (11 issues)
- Subscription-Plus (11 issues plus the Elektor Volume 2005 CD-ROM)

* Offer available to Subscribers who have not held a Subscription to Elektor Electronics in the last 12 Months. Offer Subject to Availability. See reverse for rates and conditions.

Title (Dr/Mr/Mrs/Ma*) Initials Surname
Name
Address + Post code
Email

Date — — 2005 Signature

METHOD OF PAYMENT
(see reverse before ticking as appropriate)

Note: cheques not made out in sterling must be increased by the equivalent of £15.00

- Bank draft
- Cheque (payable to Elektor Electronics Publishing)
- Giro transfer (our account no. 34 152 3801)
- Postal/money order
- VISA MasterCard

Expiry date:

Please send this order form to
Elektor Electronics (Publishing) B.V.
Regus Brentford
1000 Great West Road
Brentford TW8 9HH
United Kingdom

Tel.: (+44) (0) 208 261 4509
Fax: (+44) (0) 208 261 4447
Internet: www.elektor-electronics.co.uk

*USA and Canada residents may use $ price, and send the order form to:
Elektor North America
261 Old Colony Road
P.O. Box 178
Lexington, MA 02420-0178
Tel.: (781) 862-4494
Fax: (781) 862-4868
Email: custserv@elektor.com

Order Form

12-2005

E-blocks Starter Kit basic £ 96.00
E-blocks Starter Kit professional £ 166.00
CD-ROM ECD Edition 3 £ 12.95
Microcontroller Basics £ 18.70

Flash Microcontroller Starter Kit £ 69.00

Prices and item descriptions subject to change.
The publishers reserve the right to change prices without prior notice. Prices and item descriptions shown here supersede those in previous issues, E. & O.E.

SWITCH only: Issue number:

Name
Address + Post code
Tel. Fax Email
Date — — 2005 Signature

Sub-total
P&P
Total paid

METHOD OF PAYMENT
(see reverse before ticking as appropriate)

Note: cheques not made out in sterling must be increased by the equivalent of £15.00

- Bank draft
- Cheque (payable to Elektor Electronics Publishing)
- Giro transfer (our account no. 34 152 3801)
- Postal/money order
- VISA MasterCard

Expiry date:

Please send this order form to
Elektor Electronics (Publishing) B.V.
Regus Brentford
1000 Great West Road
Brentford TW8 9HH
United Kingdom

Tel.: (+44) (0) 208 261 4509
Fax: (+44) (0) 208 261 4447
Internet: www.elektor-electronics.co.uk

Yes, I am taking out an annual subscription to elektor electronics and receive a free 1 W Luxeon LED Torchlight.

I would like:

- Standard Subscription (11 issues)
- Subscription-Plus (11 issues plus the Elektor Volume 2005 CD-ROM)

* Offer available to Subscribers who have not held a Subscription to Elektor Electronics in the last 12 Months. Offer Subject to Availability. See reverse for rates and conditions.

Title (Dr/Mr/Mrs/Ma*) Initials Surname
Name
Address + Post code
Email

Date — — 2005 Signature

* cross out what is not applicable

EL12
ORDERING INSTRUCTIONS, P&P CHARGES

Except in the USA and Canada, all orders, except for subscriptions (for which see below), must be sent by POST or FAX to our Brentford address using the Order Form overleaf. On-line ordering: http://www.elektron-electronics.co.uk

Readers in the USA and Canada may (but are not obliged to) send orders, except for subscriptions (for which see below), to the USA address given on the order form. Please apply to Old Colony Sound for applicable P&P charges. Please allow 4-6 weeks for delivery.

Orders placed on our Brentford office must include P&P charges (Priority or Standard) as follows:
UK: £4.00 Europe: £5.00 (Standard) or £7.00 (Priority) Outside Europe: £8.00 (Standard) or £12.00 (Priority)

HOW TO PAY

Unless you have an approved credit account with us, all orders must be accompanied by the full payment, including postage and packing charges as stated above. Payment may be made by cheque drawn on a London clearing bank (but see para. 4 below), postal order, VISA, Access, MasterCard or EuroCard (when paying by credit card, the order must go the cardholder's address). Do not send cash through the mail. Cheques and postal orders should be crossed and made payable to "Elektor Electronics (Publishing)". Payment may also be made by direct transfer from a private or business Giro account to our Giro account No. A4152-3801 by completing and sending to the National Giro Centre, in a National Giro postage-paid envelope, a National Giro transfer/deposit form. Do not send Giro transfers direct to us, as this will delay your order. If you live outside the UK, payment may also be made by Bankers' sterling draft drawn on a London clearing bank. Eurocheque made out in pounds sterling (with holder's guarantee card number written on the back), or US or Canadian dollar cheque drawn on a US or Canadian bank. If you pay by Bankers' sterling draft, make clear to the issuing bank that your full name and address MUST be communicated to the London clearing bank. Our bankers are

HAT WEST PLC, 1 St James's Square, Wadhurst, East Sussex TN5 6BH, England. Our account number is 3512 5225,
Sorting Code 60-22-15. IBAN code: GB40 NWB K6 022 15 3512 5225 BIC code: NWB KGB 2L

COMPONENTS

Components for projects appearing in Elektor Electronics are usually available from certain advertisers in this magazine. If difficulties in the supply of components are envisaged, a source will normally be advised in the article. Note, however, that the source(s) given is (are) not exclusive.

TERMS OF BUSINESS

Delivery Although every effort will be made to dispatch your order within 2-3 weeks from receipt of your instructions, we cannot guarantee this time scale for all orders. Returns Faulty goods or goods sent in error may be returned for replacement or refund, but not before obtaining our consent. All goods returned should be packed securely in a padded bag or box, enclosing a covering letter stating the dispatch note number. If the goods are returned because of a mistake on our part, we will refund the return postage. Damaged goods Claims for damaged goods must be received at our Tunbridge Wells office within 10-days (UK); 14-days (Europe) or 21-days (all other countries). CANCELLED ORDERS: All cancelled orders will be subject to a 10% handling charge with a minimum charge of £5.00. PATENTS Patent protection may exist in respect of circuits, devices, components, and so on, described in our books and magazines. Elektor Electronics (Publishing) does not accept responsibility or liability for failing to identify such patent or other protection. COPYRIGHT All drawings, photographs, articles, printed circuit boards, programmed integrated circuits, diskettes and software carriers published in our books and magazines (other than in third-party advertisements) are copyright and may not be reproduced or transmitted in any form or by any means, including photocopying and recording, in whole or in part, without the prior permission of Elektor Electronics (Publishing) in writing. Such written permission must also be obtained before any part of these publications is stored in a retrieval system of any nature. Notwithstanding the above, printed-circuit boards may be produced for private and personal use without prior permission. LIMITATION OF LIABILITY: Elektor Electronics (Publishing) shall not be liable in contract, tort, or otherwise, for any loss or damage suffered by the purchaser whatsoever or howsoever arising out of, or in connexion with, the supply of goods or services by Elektor Electronics (Publishing) other than to supply goods as described or, at the option of Elektor Electronics (Publishing), to refund the purchaser any money paid in respect of the goods. LAW Any question relating to the supply of goods and services by Elektor Electronics (Publishing) shall be determined in all respects by the laws of England.

January 2005

SUBSCRIPTION RATES FOR ANNUAL SUBSCRIPTION

<table>
<thead>
<tr>
<th></th>
<th>Standard</th>
<th>Plus</th>
</tr>
</thead>
<tbody>
<tr>
<td>United Kingdom</td>
<td>£41.90</td>
<td>£48.80</td>
</tr>
<tr>
<td>Economy Mail</td>
<td>£54.50</td>
<td>£61.40</td>
</tr>
<tr>
<td>Rest of the World (excluding Europe)</td>
<td>£54.50</td>
<td>£61.40</td>
</tr>
<tr>
<td>Priority Airmail</td>
<td>£68.90</td>
<td>£75.80</td>
</tr>
<tr>
<td>Europe &amp; Eire</td>
<td>£54.50</td>
<td>£61.40</td>
</tr>
<tr>
<td>Outside Europe</td>
<td>£68.90</td>
<td>£75.80</td>
</tr>
<tr>
<td>Airfreight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA &amp; Canada only</td>
<td>US$95.50</td>
<td>US$106.50</td>
</tr>
</tbody>
</table>

Payment should be made by:

- Cheque or bankers' draft in sterling drawn on a London clearing bank (except in the USA and Canada — see below);
- US$ cheques drawn on a US or Canadian bank — only by subscribers in the USA or Canada.
- Direct transfer to our bank (HAT WEST PLC, 1 St James's Square, Wadhurst, East Sussex TN5 6BH, England). Our account number is 3512 5225, Sorting Code 60-22-15. IBAN code: GB40 NWB K6 022 15 3512 5225 BIC code: NWB KGB 2L
- Postal order.
- Credit card: VISA, ACCESS, MasterCard. JCB Electron or Switch.
- Transfer to our Giro Account No. A4152-3801. Giro transfers should be made by completing and sending the appropriate transfer/deposit form to the National Giro Centre (UK) or to your national Giro Centre.

Cheques and postal orders should be made payable to Elektor Electronics (Publishing). Do not send cash through the mail.

SUBSCRIPTION CONDITIONS

The standard subscription order period is twelve months. If a permanent change of address during the subscription period means that copies have to be despatched by a more expensive service, no extra charge will be made. Conversely, no refund will be made, nor expiry date extended, if a change of address allows the use of a cheaper service.

Student applications, which qualify for a 20% (twenty per cent) reduction in current rates, must be supported by evidence of student status signed by the head of the college, school or university faculty. A standard Student Subscription costs £33.50, a Student Subscription-Plus costs £40.40 (UK only).

Please note that new subscriptions take about four weeks from receipt of order to become effective.

Cancled subscriptions will be subject to a charge of 25% (twenty-five per cent) of the full subscription price or £7.50, whichever is the higher, plus the cost of any issues already dispatched. Subscriptions cannot be cancelled after they have run for six months or more.

January 2005
Straight from the heart of electronics each month

This Issue:
OPTOELECTRONICS & DISPLAY

Electronic Warfare – Christmas Holiday Projects and our annual book clearance sale

Next Issue:
FREE VISUAL BASIC 2005 BOOKLET

reverse engineering — part mining — re-use of equipment & components

Want to know everything each month?
Select your own annual subscription and receive a free 1W Luxeon LED Torchlight

Available options:

- Elektor Electronics annual subscription (standard)
  You receive 11 issues, including the July/August double issue.
- Elektor Electronics annual subscription-PLUS
  You receive 11 issues, including the July/August double issue, plus a copy of the Elektor Electronics Volume 2005 CD-ROM (normal price £16.25). Your saving: approx. £10.00!

Please fill out the Order Form with this issue.
Subscription rates and conditions may be found at the back of this issue.
PROTEUS
The Complete Electronics Design System

Schematic & PCB Layout
• Powerful & flexible schematic capture.
• Auto-component placement and rip-up/retry PCB routing.
• Polygonal gridless ground planes.
• Libraries of over 8000 schematic and 1000 PCB parts.
• Bill of materials, DRC reports and much more.

Mixed Mode SPICE Circuit Simulation
• Berkeley SPICE3F5 simulator with custom extensions for true mixed mode and interactive simulation.
• 6 virtual instruments and 14 graph based analysis types.
• 6000 models including TTL, CMOS and PLD digital parts.
• Fully compatible with manufacturers' SPICE models.

Proteus VSM - Co-simulation and debugging for popular Micro-controllers
• Supports PIC, AVR, 8051, ARM7 and BASIC STAMP micro-controllers.
• Co-simulate target firmware with your hardware design.
• Includes interactive peripheral models for LED and LCD displays, switches, keypads, virtual terminal and much, much more.
• Compatible with popular compilers and assemblers from Microchip, Crownhill, IAR, Keil, and others.

New Features in Version 6.8
• Interactive Design Rule Check.
• Mitring / Unmitring.
• Enhanced track editing.
• Struct/Array expansion.
• ELF/DWARF file loader.
• Expanded model libraries.

Call Now for Upgrade Pricing

NEW ARM/LPC2000 MODELS FOR PROTEUS VSM NOW AVAILABLE

Tel: 01756 753440
Fax: 01756 752857
Contact us for Free Demo CD

www.labcenter.co.uk
info@labcenter.co.uk